Upload trained LunarLander-v2 PPO agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2-M331-test1.zip +3 -0
- ppo-LunarLander-v2-M331-test1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-M331-test1/data +94 -0
- ppo-LunarLander-v2-M331-test1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-M331-test1/policy.pth +3 -0
- ppo-LunarLander-v2-M331-test1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-M331-test1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 212.06 +/- 39.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed5576e790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed5576e820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed5576e8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed5576e940>", "_build": "<function ActorCriticPolicy._build at 0x7fed5576e9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fed5576ea60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed5576eaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed5576eb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed5576ec10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed5576eca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed5576ed30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fed55769bd0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670849488977205397, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAApCir7IbuE9clofPPeLHb7Xs3W7fTQsPQAAAAAAAAAAABpAvuEyyDsW7209d47Tvfb9sDxwtAY9AAAAAAAAAACgulw+n5E8P7Gsyr3Trpi+XOUWPZ6zVjwAAAAAAAAAAABHgrw7qgc/jh/Luwu9hb5aPNs8RqHtvAAAAAAAAAAAHuH3vtkK7T4C+7m9YdQvvo7Fgr2TVdC7AAAAAAAAAAAmCxW/XcunvXr/jb4pdN28kbKcPupcbr4AAIA/AACAP6DiB7+0a9k+PQ+WvHkjZb7AlpK9iREfOwAAAAAAAAAATc8rPVjDkz9yt9Y9bg2PvomebD1b5hg9AAAAAAAAAADQrZO+/+8dP8r2obxb8Vm+WWYDvXvVw7oAAAAAAAAAADh19r4ebCY/qE/dPVXkeL5QJSy8r1ucvAAAAAAAAAAAQMELPgPgfT82jNc9J62MvtCurT2ON408AAAAAAAAAABtcy2+eE8EP1r23bw+RFu+9ue+vAt7SLwAAAAAAAAAAPPfxb3GjqA/Gukkv1MfAb+JUrw8Rf/lvAAAAAAAAAAA27PsvqMyvT4dyrU9dyo2vkCZA71o42w9AAAAAAAAAADNZSi9pAaNPStCI74hRgm+aza9vIua/rsAAAAAAAAAANvo5744OQY/rwsRvmuVZb611pa97YfpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1SE3ww1ua0CUhpRSlIwBbJRNVwGMAXSUR0CQ7XPiDM/ydX2UKGgGaAloD0MI4iAhyhcFbUCUhpRSlGgVTZIBaBZHQJDtw4YJmd11fZQoaAZoCWgPQwgSTgteNIhwQJSGlFKUaBVNgQFoFkdAkO84eo1k2HV9lChoBmgJaA9DCEOtad7x+G5AlIaUUpRoFU1QAWgWR0CQ8KCBwuM/dX2UKGgGaAloD0MIy9jQzf7wQsCUhpRSlGgVTSUBaBZHQJDyKgh8pkR1fZQoaAZoCWgPQwgs8YCyqRRqQJSGlFKUaBVNVgFoFkdAkPPf8/D+BHV9lChoBmgJaA9DCEceiCxSdm1AlIaUUpRoFU2RAWgWR0CQ9Hwg1WKedX2UKGgGaAloD0MIY0FhUCZobECUhpRSlGgVTWsBaBZHQJD0lGFzuF91fZQoaAZoCWgPQwgYITza+PBwQJSGlFKUaBVNcwFoFkdAkPWbQ9ic5XV9lChoBmgJaA9DCPJBz2ZVKG9AlIaUUpRoFU15AWgWR0CQ+jyu6mO3dX2UKGgGaAloD0MIHxMpzWYZZcCUhpRSlGgVTeIBaBZHQJD6V6fJ3gV1fZQoaAZoCWgPQwg9EFmkiWJmQJSGlFKUaBVN/gFoFkdAkPtbpFCswXV9lChoBmgJaA9DCAjHLHsSwCDAlIaUUpRoFU1fAWgWR0CQ/MjnV5KOdX2UKGgGaAloD0MIQBaiQ+CzakCUhpRSlGgVTWEBaBZHQJD9SBmPHT91fZQoaAZoCWgPQwh+qDRi5lRsQJSGlFKUaBVNCAJoFkdAkP1UA5q/NHV9lChoBmgJaA9DCOv822W/vWxAlIaUUpRoFU19AWgWR0CQ/hPTXrdFdX2UKGgGaAloD0MIDogQV05za0CUhpRSlGgVTVIBaBZHQJD+Vr2xptd1fZQoaAZoCWgPQwhPdjOjHxk1QJSGlFKUaBVNBQFoFkdAkQADzAeq73V9lChoBmgJaA9DCBw/VBoxUxJAlIaUUpRoFU0zAWgWR0CRFIHSF49pdX2UKGgGaAloD0MIymq6nugHakCUhpRSlGgVTVgBaBZHQJEVerHU+cJ1fZQoaAZoCWgPQwilS/+S1JplQJSGlFKUaBVNzAFoFkdAkRdwd4mkWXV9lChoBmgJaA9DCIUoX9DCz2tAlIaUUpRoFU1dAWgWR0CRF30YTCcgdX2UKGgGaAloD0MI61VkdEDqZUCUhpRSlGgVTe0BaBZHQJEaVVPva111fZQoaAZoCWgPQwjvGvSlt45sQJSGlFKUaBVNTgFoFkdAkRwWd/axo3V9lChoBmgJaA9DCPSHZp5ce2xAlIaUUpRoFU1qAWgWR0CRHFG7z06HdX2UKGgGaAloD0MI4J7nT9u+cECUhpRSlGgVTQUDaBZHQJEck6QvHtF1fZQoaAZoCWgPQwgWFAZlGgFUQJSGlFKUaBVN6ANoFkdAkR25aJQ+EHV9lChoBmgJaA9DCHBBtizfN21AlIaUUpRoFU2KAWgWR0CRHc6o2n89dX2UKGgGaAloD0MIqBso8E7Ga0CUhpRSlGgVTVEBaBZHQJEeu0dBBzF1fZQoaAZoCWgPQwj7ko0H2+5qQJSGlFKUaBVNhQFoFkdAkR/qmoBJZnV9lChoBmgJaA9DCEQWaeId9HBAlIaUUpRoFU15AWgWR0CRIGrK/20zdX2UKGgGaAloD0MI1lbsLzu/cECUhpRSlGgVTWQBaBZHQJEjFiDujRF1fZQoaAZoCWgPQwi9GTVfJfRmQJSGlFKUaBVNlwFoFkdAkSYvLs8gZHV9lChoBmgJaA9DCPmdJjPey2tAlIaUUpRoFU1yAWgWR0CRJn3SKFZgdX2UKGgGaAloD0MIN94dGSsNcUCUhpRSlGgVTXcBaBZHQJEmwBDG96F1fZQoaAZoCWgPQwgxJv29lFFuQJSGlFKUaBVNQAFoFkdAkSdAQ6IWQHV9lChoBmgJaA9DCF97ZkmAGgXAlIaUUpRoFUv8aBZHQJEotwkxASp1fZQoaAZoCWgPQwj/k797x7RoQJSGlFKUaBVNaAFoFkdAkSs1MdtEX3V9lChoBmgJaA9DCEG7Q4qBBW9AlIaUUpRoFU1rAWgWR0CRLLDrqt5ldX2UKGgGaAloD0MI4qsdxblKcECUhpRSlGgVTZoBaBZHQJEtR/Ue+251fZQoaAZoCWgPQwhNnrKarnthQJSGlFKUaBVNtgFoFkdAkS5aLKmsNnV9lChoBmgJaA9DCCHNWDQd/GxAlIaUUpRoFU1+AWgWR0CRMEhl18sudX2UKGgGaAloD0MIGm7A54fxNUCUhpRSlGgVTTEBaBZHQJEwrY7JW/91fZQoaAZoCWgPQwhKfO4Ee+hqQJSGlFKUaBVNkAFoFkdAkTGk/B3zMHV9lChoBmgJaA9DCDMzMzMzx2ZAlIaUUpRoFU3fAWgWR0CRMdCFK02MdX2UKGgGaAloD0MIU9DtJQ0ZaUCUhpRSlGgVTWgBaBZHQJE2a0Z3s5Z1fZQoaAZoCWgPQwhHsHH9u5ZwQJSGlFKUaBVNfAFoFkdAkTeorJ8v3HV9lChoBmgJaA9DCBdi9UeYUWhAlIaUUpRoFU2EAWgWR0CROJn5BTn8dX2UKGgGaAloD0MI2/0qwHfjbECUhpRSlGgVTXABaBZHQJE5VOJtSAJ1fZQoaAZoCWgPQwiMhLacS2pWQJSGlFKUaBVN6ANoFkdAkTnbcXWOInV9lChoBmgJaA9DCD4l58QemgBAlIaUUpRoFU0LAWgWR0CROjBRAKOUdX2UKGgGaAloD0MIQNr/AGs4X0CUhpRSlGgVTegDaBZHQJE6T1pTMq11fZQoaAZoCWgPQwiitaLNsRhxQJSGlFKUaBVNcgFoFkdAkTuQZOzpo3V9lChoBmgJaA9DCE0tW+uLEF1AlIaUUpRoFU3oA2gWR0CRPRsI3R5UdX2UKGgGaAloD0MIjKIHPgaMa0CUhpRSlGgVTYABaBZHQJE9WHIp6Qh1fZQoaAZoCWgPQwj7rZ0oCWkKQJSGlFKUaBVNFwFoFkdAkT2vFirksHV9lChoBmgJaA9DCDUnLzIBCGpAlIaUUpRoFU2eAWgWR0CRPvEpiI+GdX2UKGgGaAloD0MIQ3Bcxs2vbUCUhpRSlGgVTV8BaBZHQJFSErlNlAh1fZQoaAZoCWgPQwiw/s9h/lJwQJSGlFKUaBVNcAFoFkdAkVJXT7VJ+XV9lChoBmgJaA9DCF6c+GpHPmdAlIaUUpRoFU2eAWgWR0CRVS1pCa7VdX2UKGgGaAloD0MIeXO4VnvYHsCUhpRSlGgVTSUBaBZHQJFX8+QlruZ1fZQoaAZoCWgPQwiiemtgqwBrQJSGlFKUaBVNdwFoFkdAkVhuKfnOjnV9lChoBmgJaA9DCKhtwyiIHG1AlIaUUpRoFU1iAWgWR0CRWKgQYk3TdX2UKGgGaAloD0MI2NR5VHwzbkCUhpRSlGgVTVQBaBZHQJFZlHPNVzZ1fZQoaAZoCWgPQwjvchHfyZVxQJSGlFKUaBVNbgFoFkdAkVuahtcfNnV9lChoBmgJaA9DCCbjGMkeJ2hAlIaUUpRoFU1tAWgWR0CRW7Hfdhy9dX2UKGgGaAloD0MITn0geWc4bkCUhpRSlGgVTU8BaBZHQJFb0Alv60p1fZQoaAZoCWgPQwidLLXe77ZtQJSGlFKUaBVNTwNoFkdAkVzs+JP69HV9lChoBmgJaA9DCLIqwk3GRW9AlIaUUpRoFU1SAWgWR0CRXgH7xd6cdX2UKGgGaAloD0MIjBGJQsveaUCUhpRSlGgVTWYBaBZHQJFebBBRhtt1fZQoaAZoCWgPQwii0R3EzmdtQJSGlFKUaBVNQwFoFkdAkV61MZgogHV9lChoBmgJaA9DCNHmOLeJE2dAlIaUUpRoFU2CAWgWR0CRXyqrBCUpdX2UKGgGaAloD0MI1SDM7d6fbUCUhpRSlGgVTWIBaBZHQJFgDTjNpud1fZQoaAZoCWgPQwimXrcIDBVmQJSGlFKUaBVNaQFoFkdAkWCGoegctHV9lChoBmgJaA9DCGUbuAN1Bm1AlIaUUpRoFU1lAWgWR0CRYvoJAt4BdX2UKGgGaAloD0MIiQyreKP6bUCUhpRSlGgVTT4BaBZHQJFj4yFfzBh1fZQoaAZoCWgPQwi1GDxM+1JAwJSGlFKUaBVNRgFoFkdAkWWic5Ke1HV9lChoBmgJaA9DCOS7lLrkNm5AlIaUUpRoFU1kAWgWR0CRZc5xzaK2dX2UKGgGaAloD0MIZXH/kekAE0CUhpRSlGgVTRgBaBZHQJFl1mf5DZ11fZQoaAZoCWgPQwiq9BPO7mNrQJSGlFKUaBVNYQFoFkdAkWXhjWkJr3V9lChoBmgJaA9DCF02OuenEnBAlIaUUpRoFU1fAWgWR0CRaA9UCJXRdX2UKGgGaAloD0MIIO7qVWTUBECUhpRSlGgVTSkBaBZHQJFoyiN83Mp1fZQoaAZoCWgPQwgN38K6cYprQJSGlFKUaBVNeAFoFkdAkWkX5zo2XXV9lChoBmgJaA9DCFLSw9Bqa29AlIaUUpRoFU1oAWgWR0CRaaHww0wbdX2UKGgGaAloD0MI6DHKMy9PakCUhpRSlGgVTU4BaBZHQJFpvbQC0Wx1fZQoaAZoCWgPQwjElEiil6VpQJSGlFKUaBVNXwFoFkdAkWyc3uNPxnV9lChoBmgJaA9DCOKt82+X6WlAlIaUUpRoFU2IAWgWR0CRbSa7mMfjdX2UKGgGaAloD0MI4UIewY32bUCUhpRSlGgVTXoBaBZHQJFuOaPS2IB1fZQoaAZoCWgPQwhrniPyXRoawJSGlFKUaBVNMQFoFkdAkXFP7m+0xHV9lChoBmgJaA9DCLdELjiDx0dAlIaUUpRoFU3oA2gWR0CRcaoUzsQedX2UKGgGaAloD0MIBYpYxLDjQcCUhpRSlGgVTQgBaBZHQJFyXUVi4KB1fZQoaAZoCWgPQwh5B3jSwpluQJSGlFKUaBVNlgFoFkdAkXJ99ph4MXV9lChoBmgJaA9DCAnE6/qF7m1AlIaUUpRoFU1UAWgWR0CRcsV8Ti84dX2UKGgGaAloD0MIbW+3JAdEcUCUhpRSlGgVTVsBaBZHQJFy24ZuQ6p1fZQoaAZoCWgPQwjRlQhU/zVnQJSGlFKUaBVNMQJoFkdAkXNZM6BAfXV9lChoBmgJaA9DCP94r1rZBnBAlIaUUpRoFU1vAWgWR0CRc6NR3u/ldX2UKGgGaAloD0MIs9KkFHRgb0CUhpRSlGgVTacBaBZHQJFz5tygf2d1fZQoaAZoCWgPQwhgkzXq4f1wQJSGlFKUaBVNUAFoFkdAkXYhBAv+O3V9lChoBmgJaA9DCCZWRiMfOHBAlIaUUpRoFU19AWgWR0CRdux0dRzjdX2UKGgGaAloD0MIP3RBfUuta0CUhpRSlGgVTXwBaBZHQJF30spXp4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-M331-test1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64d105781c145c345987ede4bd0d97450ae86f07f30c493eca5906290224d73c
|
3 |
+
size 147216
|
ppo-LunarLander-v2-M331-test1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-M331-test1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fed5576e790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed5576e820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed5576e8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed5576e940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fed5576e9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fed5576ea60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed5576eaf0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fed5576eb80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed5576ec10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed5576eca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed5576ed30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fed55769bd0>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670849488977205397,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAApCir7IbuE9clofPPeLHb7Xs3W7fTQsPQAAAAAAAAAAABpAvuEyyDsW7209d47Tvfb9sDxwtAY9AAAAAAAAAACgulw+n5E8P7Gsyr3Trpi+XOUWPZ6zVjwAAAAAAAAAAABHgrw7qgc/jh/Luwu9hb5aPNs8RqHtvAAAAAAAAAAAHuH3vtkK7T4C+7m9YdQvvo7Fgr2TVdC7AAAAAAAAAAAmCxW/XcunvXr/jb4pdN28kbKcPupcbr4AAIA/AACAP6DiB7+0a9k+PQ+WvHkjZb7AlpK9iREfOwAAAAAAAAAATc8rPVjDkz9yt9Y9bg2PvomebD1b5hg9AAAAAAAAAADQrZO+/+8dP8r2obxb8Vm+WWYDvXvVw7oAAAAAAAAAADh19r4ebCY/qE/dPVXkeL5QJSy8r1ucvAAAAAAAAAAAQMELPgPgfT82jNc9J62MvtCurT2ON408AAAAAAAAAABtcy2+eE8EP1r23bw+RFu+9ue+vAt7SLwAAAAAAAAAAPPfxb3GjqA/Gukkv1MfAb+JUrw8Rf/lvAAAAAAAAAAA27PsvqMyvT4dyrU9dyo2vkCZA71o42w9AAAAAAAAAADNZSi9pAaNPStCI74hRgm+aza9vIua/rsAAAAAAAAAANvo5744OQY/rwsRvmuVZb611pa97YfpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1SE3ww1ua0CUhpRSlIwBbJRNVwGMAXSUR0CQ7XPiDM/ydX2UKGgGaAloD0MI4iAhyhcFbUCUhpRSlGgVTZIBaBZHQJDtw4YJmd11fZQoaAZoCWgPQwgSTgteNIhwQJSGlFKUaBVNgQFoFkdAkO84eo1k2HV9lChoBmgJaA9DCEOtad7x+G5AlIaUUpRoFU1QAWgWR0CQ8KCBwuM/dX2UKGgGaAloD0MIy9jQzf7wQsCUhpRSlGgVTSUBaBZHQJDyKgh8pkR1fZQoaAZoCWgPQwgs8YCyqRRqQJSGlFKUaBVNVgFoFkdAkPPf8/D+BHV9lChoBmgJaA9DCEceiCxSdm1AlIaUUpRoFU2RAWgWR0CQ9Hwg1WKedX2UKGgGaAloD0MIY0FhUCZobECUhpRSlGgVTWsBaBZHQJD0lGFzuF91fZQoaAZoCWgPQwgYITza+PBwQJSGlFKUaBVNcwFoFkdAkPWbQ9ic5XV9lChoBmgJaA9DCPJBz2ZVKG9AlIaUUpRoFU15AWgWR0CQ+jyu6mO3dX2UKGgGaAloD0MIHxMpzWYZZcCUhpRSlGgVTeIBaBZHQJD6V6fJ3gV1fZQoaAZoCWgPQwg9EFmkiWJmQJSGlFKUaBVN/gFoFkdAkPtbpFCswXV9lChoBmgJaA9DCAjHLHsSwCDAlIaUUpRoFU1fAWgWR0CQ/MjnV5KOdX2UKGgGaAloD0MIQBaiQ+CzakCUhpRSlGgVTWEBaBZHQJD9SBmPHT91fZQoaAZoCWgPQwh+qDRi5lRsQJSGlFKUaBVNCAJoFkdAkP1UA5q/NHV9lChoBmgJaA9DCOv822W/vWxAlIaUUpRoFU19AWgWR0CQ/hPTXrdFdX2UKGgGaAloD0MIDogQV05za0CUhpRSlGgVTVIBaBZHQJD+Vr2xptd1fZQoaAZoCWgPQwhPdjOjHxk1QJSGlFKUaBVNBQFoFkdAkQADzAeq73V9lChoBmgJaA9DCBw/VBoxUxJAlIaUUpRoFU0zAWgWR0CRFIHSF49pdX2UKGgGaAloD0MIymq6nugHakCUhpRSlGgVTVgBaBZHQJEVerHU+cJ1fZQoaAZoCWgPQwilS/+S1JplQJSGlFKUaBVNzAFoFkdAkRdwd4mkWXV9lChoBmgJaA9DCIUoX9DCz2tAlIaUUpRoFU1dAWgWR0CRF30YTCcgdX2UKGgGaAloD0MI61VkdEDqZUCUhpRSlGgVTe0BaBZHQJEaVVPva111fZQoaAZoCWgPQwjvGvSlt45sQJSGlFKUaBVNTgFoFkdAkRwWd/axo3V9lChoBmgJaA9DCPSHZp5ce2xAlIaUUpRoFU1qAWgWR0CRHFG7z06HdX2UKGgGaAloD0MI4J7nT9u+cECUhpRSlGgVTQUDaBZHQJEck6QvHtF1fZQoaAZoCWgPQwgWFAZlGgFUQJSGlFKUaBVN6ANoFkdAkR25aJQ+EHV9lChoBmgJaA9DCHBBtizfN21AlIaUUpRoFU2KAWgWR0CRHc6o2n89dX2UKGgGaAloD0MIqBso8E7Ga0CUhpRSlGgVTVEBaBZHQJEeu0dBBzF1fZQoaAZoCWgPQwj7ko0H2+5qQJSGlFKUaBVNhQFoFkdAkR/qmoBJZnV9lChoBmgJaA9DCEQWaeId9HBAlIaUUpRoFU15AWgWR0CRIGrK/20zdX2UKGgGaAloD0MI1lbsLzu/cECUhpRSlGgVTWQBaBZHQJEjFiDujRF1fZQoaAZoCWgPQwi9GTVfJfRmQJSGlFKUaBVNlwFoFkdAkSYvLs8gZHV9lChoBmgJaA9DCPmdJjPey2tAlIaUUpRoFU1yAWgWR0CRJn3SKFZgdX2UKGgGaAloD0MIN94dGSsNcUCUhpRSlGgVTXcBaBZHQJEmwBDG96F1fZQoaAZoCWgPQwgxJv29lFFuQJSGlFKUaBVNQAFoFkdAkSdAQ6IWQHV9lChoBmgJaA9DCF97ZkmAGgXAlIaUUpRoFUv8aBZHQJEotwkxASp1fZQoaAZoCWgPQwj/k797x7RoQJSGlFKUaBVNaAFoFkdAkSs1MdtEX3V9lChoBmgJaA9DCEG7Q4qBBW9AlIaUUpRoFU1rAWgWR0CRLLDrqt5ldX2UKGgGaAloD0MI4qsdxblKcECUhpRSlGgVTZoBaBZHQJEtR/Ue+251fZQoaAZoCWgPQwhNnrKarnthQJSGlFKUaBVNtgFoFkdAkS5aLKmsNnV9lChoBmgJaA9DCCHNWDQd/GxAlIaUUpRoFU1+AWgWR0CRMEhl18sudX2UKGgGaAloD0MIGm7A54fxNUCUhpRSlGgVTTEBaBZHQJEwrY7JW/91fZQoaAZoCWgPQwhKfO4Ee+hqQJSGlFKUaBVNkAFoFkdAkTGk/B3zMHV9lChoBmgJaA9DCDMzMzMzx2ZAlIaUUpRoFU3fAWgWR0CRMdCFK02MdX2UKGgGaAloD0MIU9DtJQ0ZaUCUhpRSlGgVTWgBaBZHQJE2a0Z3s5Z1fZQoaAZoCWgPQwhHsHH9u5ZwQJSGlFKUaBVNfAFoFkdAkTeorJ8v3HV9lChoBmgJaA9DCBdi9UeYUWhAlIaUUpRoFU2EAWgWR0CROJn5BTn8dX2UKGgGaAloD0MI2/0qwHfjbECUhpRSlGgVTXABaBZHQJE5VOJtSAJ1fZQoaAZoCWgPQwiMhLacS2pWQJSGlFKUaBVN6ANoFkdAkTnbcXWOInV9lChoBmgJaA9DCD4l58QemgBAlIaUUpRoFU0LAWgWR0CROjBRAKOUdX2UKGgGaAloD0MIQNr/AGs4X0CUhpRSlGgVTegDaBZHQJE6T1pTMq11fZQoaAZoCWgPQwiitaLNsRhxQJSGlFKUaBVNcgFoFkdAkTuQZOzpo3V9lChoBmgJaA9DCE0tW+uLEF1AlIaUUpRoFU3oA2gWR0CRPRsI3R5UdX2UKGgGaAloD0MIjKIHPgaMa0CUhpRSlGgVTYABaBZHQJE9WHIp6Qh1fZQoaAZoCWgPQwj7rZ0oCWkKQJSGlFKUaBVNFwFoFkdAkT2vFirksHV9lChoBmgJaA9DCDUnLzIBCGpAlIaUUpRoFU2eAWgWR0CRPvEpiI+GdX2UKGgGaAloD0MIQ3Bcxs2vbUCUhpRSlGgVTV8BaBZHQJFSErlNlAh1fZQoaAZoCWgPQwiw/s9h/lJwQJSGlFKUaBVNcAFoFkdAkVJXT7VJ+XV9lChoBmgJaA9DCF6c+GpHPmdAlIaUUpRoFU2eAWgWR0CRVS1pCa7VdX2UKGgGaAloD0MIeXO4VnvYHsCUhpRSlGgVTSUBaBZHQJFX8+QlruZ1fZQoaAZoCWgPQwiiemtgqwBrQJSGlFKUaBVNdwFoFkdAkVhuKfnOjnV9lChoBmgJaA9DCKhtwyiIHG1AlIaUUpRoFU1iAWgWR0CRWKgQYk3TdX2UKGgGaAloD0MI2NR5VHwzbkCUhpRSlGgVTVQBaBZHQJFZlHPNVzZ1fZQoaAZoCWgPQwjvchHfyZVxQJSGlFKUaBVNbgFoFkdAkVuahtcfNnV9lChoBmgJaA9DCCbjGMkeJ2hAlIaUUpRoFU1tAWgWR0CRW7Hfdhy9dX2UKGgGaAloD0MITn0geWc4bkCUhpRSlGgVTU8BaBZHQJFb0Alv60p1fZQoaAZoCWgPQwidLLXe77ZtQJSGlFKUaBVNTwNoFkdAkVzs+JP69HV9lChoBmgJaA9DCLIqwk3GRW9AlIaUUpRoFU1SAWgWR0CRXgH7xd6cdX2UKGgGaAloD0MIjBGJQsveaUCUhpRSlGgVTWYBaBZHQJFebBBRhtt1fZQoaAZoCWgPQwii0R3EzmdtQJSGlFKUaBVNQwFoFkdAkV61MZgogHV9lChoBmgJaA9DCNHmOLeJE2dAlIaUUpRoFU2CAWgWR0CRXyqrBCUpdX2UKGgGaAloD0MI1SDM7d6fbUCUhpRSlGgVTWIBaBZHQJFgDTjNpud1fZQoaAZoCWgPQwimXrcIDBVmQJSGlFKUaBVNaQFoFkdAkWCGoegctHV9lChoBmgJaA9DCGUbuAN1Bm1AlIaUUpRoFU1lAWgWR0CRYvoJAt4BdX2UKGgGaAloD0MIiQyreKP6bUCUhpRSlGgVTT4BaBZHQJFj4yFfzBh1fZQoaAZoCWgPQwi1GDxM+1JAwJSGlFKUaBVNRgFoFkdAkWWic5Ke1HV9lChoBmgJaA9DCOS7lLrkNm5AlIaUUpRoFU1kAWgWR0CRZc5xzaK2dX2UKGgGaAloD0MIZXH/kekAE0CUhpRSlGgVTRgBaBZHQJFl1mf5DZ11fZQoaAZoCWgPQwiq9BPO7mNrQJSGlFKUaBVNYQFoFkdAkWXhjWkJr3V9lChoBmgJaA9DCF02OuenEnBAlIaUUpRoFU1fAWgWR0CRaA9UCJXRdX2UKGgGaAloD0MIIO7qVWTUBECUhpRSlGgVTSkBaBZHQJFoyiN83Mp1fZQoaAZoCWgPQwgN38K6cYprQJSGlFKUaBVNeAFoFkdAkWkX5zo2XXV9lChoBmgJaA9DCFLSw9Bqa29AlIaUUpRoFU1oAWgWR0CRaaHww0wbdX2UKGgGaAloD0MI6DHKMy9PakCUhpRSlGgVTU4BaBZHQJFpvbQC0Wx1fZQoaAZoCWgPQwjElEiil6VpQJSGlFKUaBVNXwFoFkdAkWyc3uNPxnV9lChoBmgJaA9DCOKt82+X6WlAlIaUUpRoFU2IAWgWR0CRbSa7mMfjdX2UKGgGaAloD0MI4UIewY32bUCUhpRSlGgVTXoBaBZHQJFuOaPS2IB1fZQoaAZoCWgPQwhrniPyXRoawJSGlFKUaBVNMQFoFkdAkXFP7m+0xHV9lChoBmgJaA9DCLdELjiDx0dAlIaUUpRoFU3oA2gWR0CRcaoUzsQedX2UKGgGaAloD0MIBYpYxLDjQcCUhpRSlGgVTQgBaBZHQJFyXUVi4KB1fZQoaAZoCWgPQwh5B3jSwpluQJSGlFKUaBVNlgFoFkdAkXJ99ph4MXV9lChoBmgJaA9DCAnE6/qF7m1AlIaUUpRoFU1UAWgWR0CRcsV8Ti84dX2UKGgGaAloD0MIbW+3JAdEcUCUhpRSlGgVTVsBaBZHQJFy24ZuQ6p1fZQoaAZoCWgPQwjRlQhU/zVnQJSGlFKUaBVNMQJoFkdAkXNZM6BAfXV9lChoBmgJaA9DCP94r1rZBnBAlIaUUpRoFU1vAWgWR0CRc6NR3u/ldX2UKGgGaAloD0MIs9KkFHRgb0CUhpRSlGgVTacBaBZHQJFz5tygf2d1fZQoaAZoCWgPQwhgkzXq4f1wQJSGlFKUaBVNUAFoFkdAkXYhBAv+O3V9lChoBmgJaA9DCCZWRiMfOHBAlIaUUpRoFU19AWgWR0CRdux0dRzjdX2UKGgGaAloD0MIP3RBfUuta0CUhpRSlGgVTXwBaBZHQJF30spXp4d1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-M331-test1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ad8ade883c493c987aabf22e184a63b778a1a0f611870a99e8ffceb466fa6ea
|
3 |
+
size 87929
|
ppo-LunarLander-v2-M331-test1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c7a0d2c033673d9c5a507ab4da398647e1044040f2a1a000770c4e225863b12
|
3 |
+
size 43201
|
ppo-LunarLander-v2-M331-test1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-M331-test1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (248 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 212.0611057737098, "std_reward": 39.75476916053219, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T13:27:49.164662"}
|