--- license: apache-2.0 datasets: - HuggingFaceH4/ultrachat_200k base_model: - HuggingFaceTB/SmolLM2-1.7B library_name: peft --- # SmolLM2-1.7B-UltraChat_200k ![SmolLM2-1.7B-UltraChat_200k](https://imagedelivery.net/tQa_QONPmkASFny9ZSDT4A/7b7d93d3-72fb-4a22-e4cf-d762d314c100/public) Quantized Low Rank Adaptation (QLoRA) finetuned from HuggingFaceTB/SmolLM2-1.7B to UltraChat 200k dataset. Serves as an exercise in LLM post-training. ## Model Details - **Developed by:** Andrew Melbourne - **Model type:** Language Model - **License:** Apache 2.0 - **Finetuned from model:** HuggingFaceTB/SmolLM2-1.7B ### Model Sources Training and inference scripts are available here. - **Repository:** [SmolLM2-1.7B-ultrachat_200k on Github](https://github.com/Melbourneandrew/SmolLM2-1.7B-UltraChat_200k) ## How to Get Started with the Model Use the code below to get started with the model. ```python from peft import LoraConfig, get_peft_model, TaskType from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("M3LBY/SmolLM2-1.7B-UltraChat_200k") tokenizer = AutoTokenizer.from_pretrained("M3LBY/SmolLM2-1.7B-UltraChat_200k") messages = [{"role": "user", "content": "How far away is the sun?"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Details The adapter model was trained using Supervised Fine-Tuning (SFT) with the following configuration: - Base model: SmolLM2-1.7B - Mixed precision: bfloat16 - Learning rate: 2e-5 with linear scheduler - Warmup ratio: 0.1 - Training epochs: 1 - Effective batch size: 32 - Sequence length: 512 tokens - Flash Attention 2 enabled Trained to a loss of 1.6965 after 6,496 steps. Elapsed time: 2 hours 37 minutes. Consumed ~22 Colab Compute Units for an estimated cost of $2.21 cents. ## Evaluation ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] - PEFT 0.14.0%