MALEKSAHLIA's picture
Upload app.py
3e8dc55 verified
raw
history blame contribute delete
899 Bytes
import gradio as gr
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
# Load the model from the hub
model = AutoModelForSequenceClassification.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
tokenizer = AutoTokenizer.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
# Create a pipeline for sentiment analysis
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def predict_sentiment(sentence):
result = nlp(sentence)
sentiment = "Positive" if result[0]['label'] == 'LABEL_1' else "Negative" # Adjust the label to match your model's output
return sentiment
iface = gr.Interface(
fn=predict_sentiment,
inputs="text",
outputs="text",
title="Sentiment Analysis",
description="Enter a sentence to get the sentiment (Positive or Negative)."
)
iface.launch()