File size: 5,124 Bytes
52d3cd2 05ce87a 0608b0d 05ce87a 52d3cd2 0608b0d 05ce87a 0608b0d 05ce87a 0608b0d 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a 52d3cd2 05ce87a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
library_name: peft
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- automatic-speech-recognition
- whisper
- asr
- songhoy
- hsn
- Mali
- MALIBA-AI
- lora
- fine-tuned
- code-switching
- african-language
language:
- hsn
- fr
language_bcp47:
- hsn-ML
- fr-ML
model-index:
- name: songhoy-asr-v1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: songhoy-asr
type: custom
split: test
args:
language: hsn
metrics:
- name: WER
type: wer
value: 16.58
- name: CER
type: cer
value: 4.63
pipeline_tag: automatic-speech-recognition
---
# Songhoy-ASR-v1: First Open-Source Speech Recognition Model for Songhoy
Songhoy-ASR-v1 represents a historic milestone as the **first open-source speech recognition model** for Songhoy, a language spoken by over 3 million people across Mali, Niger, and Burkina Faso. Developed as part of the MALIBA-AI initiative, this groundbreaking model not only achieves impressive accuracy but opens the door to speech technology for Songhoy speakers for the very first time.
## Model Overview
This model demonstrates exceptional performance for Songhoy speech recognition, with particularly strong capabilities in:
- **Pure Songhoy recognition**: Accurate transcription of traditional and contemporary Songhoy speech
- **Code-switching handling**: Effectively manages the natural mixing of Songhoy with French
- **Dialect adaptation**: Works across regional variations of Songhoy
- **Noise resilience**: Maintains accuracy even with moderate background noise
## Impressive Performance Metrics
Songhoy-ASR-v1 achieves breakthrough results on our test dataset:
| Metric | Value |
|--------|-------|
| Word Error Rate (WER) | 16.58% |
| Character Error Rate (CER) | 4.63% |
These results represent the best publicly available performance for Songhoy speech recognition, making this model suitable for production applications.
## Technical Details
The model is a fine-tuned version of OpenAI's Whisper-large-v2, adapted specifically for Songhoy using LoRA (Low-Rank Adaptation). This efficient fine-tuning approach allowed us to achieve excellent results while maintaining the multilingual capabilities of the base model.
### Training Information
- **Base Model**: openai/whisper-large-v2
- **Fine-tuning Method**: LoRA (Parameter-Efficient Fine-Tuning)
- **Training Dataset**: [coming soon]
- **Training Duration**: 4 epochs
- **Batch Size**: 32 (8 per device with gradient accumulation steps of 4)
- **Learning Rate**: 0.001 with linear scheduler and 50 warmup steps
- **Mixed Precision**: Native AMP
### Training Results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3661 | 1.0 | 245 | 0.3118 |
| 0.2712 | 2.0 | 490 | 0.2215 |
| 0.2008 | 3.0 | 735 | 0.2011 |
| 0.1518 | 3.9857 | 976 | 0.1897 |
## Real-World Applications
Songhoy-ASR-v1 enables numerous applications previously unavailable to Songhoy speakers:
- **Media Transcription**: Automatic subtitling of Songhoy content
- **Voice Interfaces**: Voice-controlled applications in Songhoy
- **Educational Tools**: Language learning and literacy applications
- **Cultural Preservation**: Documentation of oral histories and traditions
- **Healthcare Communication**: Improved access to health information
- **Accessibility Solutions**: Tools for the hearing impaired
## Usage Examples
```
Coming soon
```
## Limitations
[Coming Soon]
<!--
- Performance varies with different regional dialects of Songhoy
- Very specific technical terminology may have lower accuracy
- Extreme background noise can impact transcription quality
- Very young speakers or non-native speakers may have reduced accuracy
- Limited performance with extremely low-quality audio recordings -->
## Part of MALIBA-AI's African Language Initiative
Songhoy-ASR-v1 is part of MALIBA-AI's commitment to developing speech technology for all Malian languages. This model represents a significant step toward digital inclusion for Songhoy speakers and demonstrates the potential for high-quality AI systems for African languages.
Our mission of "No Malian Language Left Behind" drives us to develop technologies that:
- Preserve linguistic diversity
- Enable access to digital tools regardless of language
- Support local innovation and content creation
- Bridge the digital divide for all Malians
## Framework Versions
- PEFT 0.14.1.dev0
- Transformers 4.50.0.dev0
- PyTorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
## License
This model is released under the Apache 2.0 license.
## Citation
```bibtex
@misc{songhoy-asr-v1,
author = {MALIBA-AI},
title = {Songhoy-ASR-v1: Speech Recognition for Songhoy},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/MALIBA-AI/songhoy-asr-v1}}
}
```
---
**MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation**
*"No Malian Language Left Behind"* |