File size: 2,271 Bytes
92046e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: PaymentNonPayment-ModernBERT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PaymentNonPayment-ModernBERT
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0157
- Accuracy: 0.9985
- F1: 0.9985
- Precision: 0.9985
- Recall: 0.9985
- Roc Auc: 0.9984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:|
| 16.0312 | 0.1996 | 79 | 0.1616 | 0.9823 | 0.9823 | 0.9829 | 0.9823 | 0.9803 |
| 0.0001 | 0.3992 | 158 | 0.1080 | 0.9882 | 0.9882 | 0.9884 | 0.9882 | 0.9890 |
| 0.0001 | 0.5989 | 237 | 0.0169 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 |
| 0.0003 | 0.7985 | 316 | 0.0138 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 |
| 0.0001 | 0.9981 | 395 | 0.0157 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
|