--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: PaymentNonPayment-ModernBERT results: [] --- # PaymentNonPayment-ModernBERT This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0157 - Accuracy: 0.9985 - F1: 0.9985 - Precision: 0.9985 - Recall: 0.9985 - Roc Auc: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 16.0312 | 0.1996 | 79 | 0.1616 | 0.9823 | 0.9823 | 0.9829 | 0.9823 | 0.9803 | | 0.0001 | 0.3992 | 158 | 0.1080 | 0.9882 | 0.9882 | 0.9884 | 0.9882 | 0.9890 | | 0.0001 | 0.5989 | 237 | 0.0169 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 | | 0.0003 | 0.7985 | 316 | 0.0138 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 | | 0.0001 | 0.9981 | 395 | 0.0157 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9984 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0