# coding=utf-8 # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Copyright 2023 Cerebras Systems. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BTLM configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "cerebras/BTLM-2.7B": "https://huggingface.co/cerebras/BTLM-2.7B/resolve/main/config.json", } class BTLMConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BTLMModel`]. It is used to instantiate a BTLM model according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the BTLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BTLMModel`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): Whether to additionally scale attention weights by `1 / layer_idx + 1`. reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. position_embedding_type (`str`, *optional*, defaults to `"learned"`): Positional embedding can be either `"alibi"` or `"learned"`. width_scale (`float`, *optional*, defaults to 1.0): muP parameter to scale output logits and initializers. Calculated as (`d_model,0 / d_model`), where `d_model` is the model's width and `d_model,0` is the proxy model's width. embeddings_scale (`float`, *optional*, defaults to 1.0): muP parameter to scale token and position embeddings. scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`): Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set scale_attn_weights to `True` as well. Example: ```python >>> from transformers import BTLMConfig, BTLMModel >>> # Initializing a BTLM configuration >>> configuration = BTLMConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = BTLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "btlm" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50257, n_positions=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, activation_function="gelu_new", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False, position_embedding_type="learned", width_scale=1.0, embeddings_scale=1.0, scale_qk_dot_by_d=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.reorder_and_upcast_attn = reorder_and_upcast_attn self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.position_embedding_type = position_embedding_type self.width_scale = width_scale self.embeddings_scale = embeddings_scale self.scale_qk_dot_by_d = scale_qk_dot_by_d super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)