--- license: cc-by-nc-4.0 tags: - generated_from_trainer - instruction fine-tuning model-index: - name: flan-t5-small-distil-v2 results: [] language: - en pipeline_tag: text2text-generation widget: - text: >- how can I become more healthy? example_title: example ---

Title

# LaMini-T5-61M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper.
Base model LaMini-LM series (#parameters)
T5 LaMini-T5-61M LaMini-T5-223M LaMini-T5-738M
Flan-T5 LaMini-Flan-T5-77M LaMini-Flan-T5-248M LaMini-Flan-T5-783M
Cerebras-GPT LaMini-Cerebras-111M LaMini-Cerebras-256M LaMini-Cerebras-590M LaMini-Cerebras-1.3B
GPT-2 LaMini-GPT-124M LaMini-GPT-774M LaMini-GPT-1.5B
GPT-Neo LaMini-Neo-125M LaMini-Neo-1.3B
GPT-J coming soon
LLaMA coming soon
## Use ### Intended use We recommend using the model to response to human instructions written in natural language. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text2text-generation', model = checkpoint) input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure

Title

We initialize with [t5-small](https://huggingface.co/t5-small) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 61M. ### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```