omkarthawakar commited on
Commit
5873179
·
verified ·
1 Parent(s): 093eb53

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -42,21 +42,31 @@ The current `transformers` version can be verified with: `pip list | grep transf
42
  To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint.
43
 
44
  ```python
45
- import torch
46
  from transformers import AutoModelForCausalLM, AutoTokenizer
47
 
48
- torch.set_default_device("cuda")
49
-
50
  model = AutoModelForCausalLM.from_pretrained("MBZUAI/MobiLlama-05B", torch_dtype="auto", trust_remote_code=True)
51
  tokenizer = AutoTokenizer.from_pretrained("MBZUAI/MobiLlama-05B", trust_remote_code=True)
52
 
53
- text = "Write a C language program to find fibonnaci series?"
54
  input_ids = tokenizer(text, return_tensors="pt").to('cuda').input_ids
55
  outputs = model.generate(input_ids, max_length=1000, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id)
56
  print(tokenizer.batch_decode(outputs[:, input_ids.shape[1]:-1])[0].strip())
57
 
58
  ```
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ## Intended Uses
61
 
62
  Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.
 
42
  To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint.
43
 
44
  ```python
 
45
  from transformers import AutoModelForCausalLM, AutoTokenizer
46
 
 
 
47
  model = AutoModelForCausalLM.from_pretrained("MBZUAI/MobiLlama-05B", torch_dtype="auto", trust_remote_code=True)
48
  tokenizer = AutoTokenizer.from_pretrained("MBZUAI/MobiLlama-05B", trust_remote_code=True)
49
 
50
+ text = "I was dancing in the river when "
51
  input_ids = tokenizer(text, return_tensors="pt").to('cuda').input_ids
52
  outputs = model.generate(input_ids, max_length=1000, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id)
53
  print(tokenizer.batch_decode(outputs[:, input_ids.shape[1]:-1])[0].strip())
54
 
55
  ```
56
 
57
+ ## Evaluation
58
+ | Evaluation Benchmark | MobiLlama-0.5B | MobiLlama-0.8B | MobiLlama-1.2B |
59
+ | ----------- | ----------- | ----------- |
60
+ | HellaSwag | 0.5252 | 0.5409 | 0.6299 |
61
+ | MMLU | 0.2645 | 0.2692 | 0.2423 |
62
+ | Arc Challenge | 0.2952 | 0.3020 | 0.3455 |
63
+ | TruthfulQA | 0.3805 | 0.3848 | 0.3557 |
64
+ | CrowsPairs | 0.6403 | 0.6482 | 0.6812 |
65
+ | PIQA | 0.7203 | 0.7317 | 0.7529 |
66
+ | Race | 0.3368 | 0.3337 | 0.3531 |
67
+ | SIQA | 0.4022 | 0.4160 | 0.4196 |
68
+ | Winogrande | 0.5753 | 0.5745 | 0.6108 |
69
+
70
  ## Intended Uses
71
 
72
  Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.