--- license: mit license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - nlp - code --- # MobiLlama-05B
mobillama logo
## Model Summary MobiLlama-05B is a Small Language Model with **0.5 billion** parameters. It was trained using the Amber data sources [Amber-Dataset](https://huggingface.co/datasets/LLM360/AmberDatasets). ## Model Description - **Model type:** Small Language Model (SLM) built using the architecture design of LLaMA-7B - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Resources for more information:** - [Training Code](https://github.com/LLM360/amber-train) - [Data Preparation](https://github.com/LLM360/amber-data-prep) - [Metrics](https://github.com/LLM360/Analysis360) - [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets) ## How to Use MobiLlama-05B has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following: * When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function. * Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source. The current `transformers` version can be verified with: `pip list | grep transformers`. To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("MBZUAI/MobiLlama-05B", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("MBZUAI/MobiLlama-05B", trust_remote_code=True) text = "I was dancing in the river when " input_ids = tokenizer(text, return_tensors="pt").to('cuda').input_ids outputs = model.generate(input_ids, max_length=1000, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id) print(tokenizer.batch_decode(outputs[:, input_ids.shape[1]:-1])[0].strip()) ``` ## Evaluation | Evaluation Benchmark | MobiLlama-0.5B | MobiLlama-0.8B | MobiLlama-1.2B | | ----------- | ----------- | ----------- | | HellaSwag | 0.5252 | 0.5409 | 0.6299 | | MMLU | 0.2645 | 0.2692 | 0.2423 | | Arc Challenge | 0.2952 | 0.3020 | 0.3455 | | TruthfulQA | 0.3805 | 0.3848 | 0.3557 | | CrowsPairs | 0.6403 | 0.6482 | 0.6812 | | PIQA | 0.7203 | 0.7317 | 0.7529 | | Race | 0.3368 | 0.3337 | 0.3531 | | SIQA | 0.4022 | 0.4160 | 0.4196 | | Winogrande | 0.5753 | 0.5745 | 0.6108 | ## Intended Uses Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.