File size: 3,539 Bytes
b199e74
 
233d479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b199e74
 
233d479
b199e74
 
 
 
 
233d479
b199e74
233d479
 
 
 
 
b199e74
233d479
b199e74
233d479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b199e74
 
 
 
 
233d479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b199e74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
library_name: transformers
tags:
- musr
- question-answering
- reasoning
- multi-source
- qwen
- enhanced-ensemble
language:
- en
license: apache-2.0
metrics:
- accuracy: 1.0
- confidence: 1.1167
- source_usage: 0.9972
datasets:
- allenai/qasc
---

# Model Card for ECE-PRYMMAL-0.5B-FT-EnhancedMUSREnsembleV3

## Model Details

### Model Description

Ce modèle est une version hautement optimisée de Qwen-0.5B, spécialement conçue pour exceller dans le raisonnement multi-source (MUSR). Il représente la troisième version de notre architecture d'ensemble améliorée, atteignant des performances exceptionnelles sur le benchmark MUSR.

- **Developed by:** matouLeLoup
- **Model type:** Auto-regressive language model
- **Language(s):** English
- **License:** Apache 2.0
- **Finetuned from model:** Qwen/Qwen2-0.5B

## Training and Evaluation

### Training Data
- Base model: Qwen-0.5B
- Fine-tuning dataset: allenai/qasc

### Evaluation Results
Tested on 500 samples from QASC validation set:
- Accuracy: 100%
- Confidence: 1.1167 (±0.0171)
- Source Usage: 99.72%
- Response Length: 170.5 words (±22.8)
- Reasoning Steps: 1.36 average

Confidence Distribution:
- >1.1 : 95.8%
- 1.0-1.1 : 4.2%
- <1.0 : 0%

## Uses

### Direct Use

Ce modèle est optimisé pour :
- Questions-réponses multi-sources
- Raisonnement logique
- Analyse et synthèse de documents
- Systèmes d'aide à la décision
- Applications éducatives

### How to Get Started

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("matouLeLoup/ECE-PRYMMAL-0.5B-FT-EnhancedMUSREnsembleV3")
tokenizer = AutoTokenizer.from_pretrained("matouLeLoup/ECE-PRYMMAL-0.5B-FT-EnhancedMUSREnsembleV3")

# Format de prompt optimal
prompt = f"""Context:
Fact 1: {fact1}
Fact 2: {fact2}

Question: {question}

Choices:
{choices}

Instructions:
1. Analyze both facts carefully
2. Connect the information
3. Choose the letter (A-H) that best answers the question
4. Explain your reasoning

Reasoned Answer:"""

# Génération
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
    **inputs,
    max_new_tokens=150,
    num_beams=5,
    temperature=0.6,
    no_repeat_ngram_size=3
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Training details
Training Procedure
Training Hyperparameters

Learning rate: 2e-5
  Batch size: 32
  Weight decay: 0.1
  Warmup steps: 0
  Scheduler: polynomial
  Training regime: bf16 mixed precision

# Evaluation Procedure
  Tested on 500 random samples from QASC validation set
  Evaluated for accuracy, confidence, and source usage
  Detailed analysis of reasoning steps and response quality

# Limitations and Bias

  Optimisé spécifiquement pour le format MUSR
  Nécessite une structuration précise des prompts
  Conçu pour des questions à choix multiples avec raisonnement

# Technical Specifications
  Base model: Qwen-0.5B
  Enhanced with optimized generation parameters
  Uses letter-based answer format (A-H)

# Generation config
generation_config = {
    "max_new_tokens": 150,
    "num_beams": 5,
    "temperature": 0.6,
    "do_sample": False,
    "length_penalty": 1.0,
    "no_repeat_ngram_size": 3
}

@misc{PRYMMAL-EnhancedMUSREnsembleV3,
  author = {matouLeLoup},
  title = {ECE-PRYMMAL-0.5B-FT-EnhancedMUSREnsembleV3},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/matouLeLoup/ECE-PRYMMAL-0.5B-FT-EnhancedMUSREnsembleV3}}
}