MHaurel commited on
Commit
be92b1c
1 Parent(s): 424f988

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 238.81 +/- 43.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc73ad9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc73ad9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc73ad9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc73ad9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7efc73ad9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7efc73add040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc73add0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc73add160>", "_predict": "<function ActorCriticPolicy._predict at 0x7efc73add1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc73add280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc73add310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc73add3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efc73ad8420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676145845051695847, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrz5r3J3+g+Zn1cPj59R74KkYw9AigyPQAAAAAAAAAAsxw9vTO8UT+ivrE9czmavqaWhzyhqhI+AAAAAAAAAABmKAc8XEt1ugzSBbrg0bE1CHVHu/AxHDkAAIA/AACAP814OjyuuZO6QoBvOgZZCjU9ctI6OqiKuQAAgD8AAIA/M/y7PFYoNT+mAxi9rDO4vkfHfr1OKdO9AAAAAAAAAADNCA+97ha1P6K9Lr9pFJe8F06wPOTXjTsAAAAAAAAAAICCSr0UWJq6II97ufykBbRfMYa64VaQOAAAgD8AAIA/Mw/zvLjOgLlafY85ab0ZNf1u/TvB7aq4AACAPwAAgD+acY88768UPebaiLpdmi2+IVqqPF+fuD0AAAAAAAAAAADOXz3s4c653IYkN2aPi7BZVfC7FuNDtgAAgD8AAIA/Zp3JvCkAILpC3oA6Ud03NWo6Jjpch5a5AACAPwAAgD/TpSY+dMGUvPjYf7odkrg4nLIAvjSWrTkAAIA/AACAP8YmPj4AmZY+QsSHvTEtUb5zlcg8CKjVuwAAAAAAAAAAzULKPY8qMbrlXwu5WnqAs9W9JztqDiE4AACAPwAAgD9mG8S9H0eyP+pR5r55ZJa+XtUJvsJhY74AAAAAAAAAAE3Rs71cSzO6/ehPO9tTjDg6/zS5aYCYuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUYL+Qg+2YkCUhpRSlIwBbJRN6AOMAXSUR0CRZ6Nke6qbdX2UKGgGaAloD0MIcf+R6VCBZUCUhpRSlGgVTegDaBZHQJFxQtBfKIV1fZQoaAZoCWgPQwgoK4arA4g5QJSGlFKUaBVL62gWR0CRdEqQRwqBdX2UKGgGaAloD0MIthK6S2JAZkCUhpRSlGgVTegDaBZHQJF1plPJq7B1fZQoaAZoCWgPQwhh+8kYHw1cQJSGlFKUaBVN6ANoFkdAkXbT6zmfXnV9lChoBmgJaA9DCGuZDMfzHmNAlIaUUpRoFU3oA2gWR0CReg7ZnL7odX2UKGgGaAloD0MIlNxhE5kPYkCUhpRSlGgVTegDaBZHQJF7wmAskIJ1fZQoaAZoCWgPQwiADvPlBa5YQJSGlFKUaBVN6ANoFkdAkX2d4qwyI3V9lChoBmgJaA9DCMGr5c7MA2VAlIaUUpRoFU3oA2gWR0CRfmAJswcpdX2UKGgGaAloD0MI5Pc2/dknPkCUhpRSlGgVS+JoFkdAkYGD7l7tzHV9lChoBmgJaA9DCAtdiUD1vzlAlIaUUpRoFUvgaBZHQJGGp5WzWwx1fZQoaAZoCWgPQwi70jJS78ZiQJSGlFKUaBVN6ANoFkdAkYhtATqSo3V9lChoBmgJaA9DCPK1Z5YEaFBAlIaUUpRoFU0GAWgWR0CRi+igTRICdX2UKGgGaAloD0MIl5APerZ/ZUCUhpRSlGgVTegDaBZHQJGROaG5+Yt1fZQoaAZoCWgPQwhPXI5XIP1hQJSGlFKUaBVN6ANoFkdAkaZQYgq3E3V9lChoBmgJaA9DCN5Wem02eGJAlIaUUpRoFU3oA2gWR0CRqgudPLxJdX2UKGgGaAloD0MI3NrC89L3ZUCUhpRSlGgVTegDaBZHQJGsGneizs11fZQoaAZoCWgPQwh5Xb9gN8ZmQJSGlFKUaBVN6ANoFkdAka7z7yhBaHV9lChoBmgJaA9DCGsnSkIiNGJAlIaUUpRoFU3oA2gWR0CRscdz4k/sdX2UKGgGaAloD0MI9gfKbftqY0CUhpRSlGgVTegDaBZHQJG0N/c32mJ1fZQoaAZoCWgPQwhdbjDUYTNLQJSGlFKUaBVNAAFoFkdAkbx3qAz55HV9lChoBmgJaA9DCIMXfQVpg2VAlIaUUpRoFU3oA2gWR0CRviR5C4SZdX2UKGgGaAloD0MI5J8ZxIcwYUCUhpRSlGgVTegDaBZHQJHBsVVPva11fZQoaAZoCWgPQwieJjPeVnRhQJSGlFKUaBVN6ANoFkdAkcTr1mJ3xHV9lChoBmgJaA9DCIVcqWdBNF5AlIaUUpRoFU3oA2gWR0CRzW8DSw4bdX2UKGgGaAloD0MIgQhx5ezIZECUhpRSlGgVTegDaBZHQJHObK9wm3R1fZQoaAZoCWgPQwipoKLqV3VkQJSGlFKUaBVN6ANoFkdAkdLYsiB5HHV9lChoBmgJaA9DCK99Ab3w5mVAlIaUUpRoFU3oA2gWR0CR2FThYNiIdX2UKGgGaAloD0MINq5/1+efYUCUhpRSlGgVTegDaBZHQJHZ3oRqXWx1fZQoaAZoCWgPQwh0m3CvzClmQJSGlFKUaBVN6ANoFkdAkdv+hwl0HXV9lChoBmgJaA9DCHu9++M93WNAlIaUUpRoFU3oA2gWR0CR31/nnuAqdX2UKGgGaAloD0MI9E9wsaLQXUCUhpRSlGgVTegDaBZHQJH0qx3V0911fZQoaAZoCWgPQwjFGi5yz3ljQJSGlFKUaBVN6ANoFkdAkfnBChN/OXV9lChoBmgJaA9DCJDdBUqKIGFAlIaUUpRoFU3oA2gWR0CR/LrK/20zdX2UKGgGaAloD0MIc6CH2rZ8YkCUhpRSlGgVTegDaBZHQJIEFgSeyzJ1fZQoaAZoCWgPQwiXxcTmYy1lQJSGlFKUaBVN6ANoFkdAkgbCmhufmXV9lChoBmgJaA9DCLHBwkka7WBAlIaUUpRoFU3oA2gWR0CSDx5Pdl/ZdX2UKGgGaAloD0MIxoUDIVlqZECUhpRSlGgVTegDaBZHQJIQa4YrJ8x1fZQoaAZoCWgPQwhS0y6mGeZnQJSGlFKUaBVN6ANoFkdAkhM3CoCMgnV9lChoBmgJaA9DCB8Svve3C2VAlIaUUpRoFU3oA2gWR0CSFZ2DQJHBdX2UKGgGaAloD0MIDTM0ngjoYUCUhpRSlGgVTegDaBZHQJIcm9AX2uh1fZQoaAZoCWgPQwiDhv4JLldhQJSGlFKUaBVN6ANoFkdAkh2BGQSzxHV9lChoBmgJaA9DCIvh6gAInWNAlIaUUpRoFU3oA2gWR0CSIUwcHWz4dX2UKGgGaAloD0MIkrHa/L9tYECUhpRSlGgVTegDaBZHQJIl9zS1E3N1fZQoaAZoCWgPQwikHMwmQMZiQJSGlFKUaBVN6ANoFkdAkidbfk3juXV9lChoBmgJaA9DCFkyx/Kue2NAlIaUUpRoFU3oA2gWR0CSKheIl+mWdX2UKGgGaAloD0MIwTi4dExBZECUhpRSlGgVTegDaBZHQJIv2RMewLV1fZQoaAZoCWgPQwjXbVD7rSdmQJSGlFKUaBVN6ANoFkdAkjKDfR/mT3V9lChoBmgJaA9DCDoi36XUG2RAlIaUUpRoFU3oA2gWR0CSS+OmixmkdX2UKGgGaAloD0MIoHB2a5niRECUhpRSlGgVTQoBaBZHQJJMu6iCaql1fZQoaAZoCWgPQwipoKLqV05jQJSGlFKUaBVN6ANoFkdAkk4w4n4O+nV9lChoBmgJaA9DCLe0GhJ3UWNAlIaUUpRoFU3oA2gWR0CSVDK7ZnL8dX2UKGgGaAloD0MIeCY0SaxWYUCUhpRSlGgVTegDaBZHQJJW5BJI1+B1fZQoaAZoCWgPQwiyDkdXafxjQJSGlFKUaBVN6ANoFkdAkl+Son8baXV9lChoBmgJaA9DCFFqL6Lt7WJAlIaUUpRoFU3oA2gWR0CSYPxOLzf8dX2UKGgGaAloD0MInfS+8TUUZ0CUhpRSlGgVTegDaBZHQJJlACU5dW11fZQoaAZoCWgPQwhbJO1Gn8JlQJSGlFKUaBVN6ANoFkdAkmiPg3tKI3V9lChoBmgJaA9DCDwVcM/z4GFAlIaUUpRoFU3oA2gWR0CSchGqPwNLdX2UKGgGaAloD0MIJ4QOugT+ZECUhpRSlGgVTegDaBZHQJJy2pAD7qJ1fZQoaAZoCWgPQwjXTL7ZZtdkQJSGlFKUaBVN6ANoFkdAknZWLP2PDHV9lChoBmgJaA9DCGoSvCGNQWBAlIaUUpRoFU3oA2gWR0CSfC3H7xd6dX2UKGgGaAloD0MIYCNJEK7AZkCUhpRSlGgVTegDaBZHQJJ+wZl4C6p1fZQoaAZoCWgPQwiki00rhRteQJSGlFKUaBVN6ANoFkdAkoLMdT5wfnV9lChoBmgJaA9DCApNEkvKwGBAlIaUUpRoFU3oA2gWR0CShLf8/D+BdX2UKGgGaAloD0MIXf3YJD8ZYUCUhpRSlGgVTegDaBZHQJKdNcry1/l1fZQoaAZoCWgPQwgjEoWWdWhcQJSGlFKUaBVN6ANoFkdAkp5dg0CRwXV9lChoBmgJaA9DCFMhHokXcGFAlIaUUpRoFU3oA2gWR0CSoHKfFrEcdX2UKGgGaAloD0MIRWRYxRsVX0CUhpRSlGgVTegDaBZHQJKou67NB4V1fZQoaAZoCWgPQwjiOVtA6CxmQJSGlFKUaBVN6ANoFkdAkqt52ll9SnV9lChoBmgJaA9DCJCg+DHmYV1AlIaUUpRoFU3oA2gWR0CSs/tRvWH2dX2UKGgGaAloD0MI3Zp0WyLMYUCUhpRSlGgVTegDaBZHQJK1ZWluWKN1fZQoaAZoCWgPQwgk7UYfcwBhQJSGlFKUaBVN6ANoFkdAkrhRnBciW3V9lChoBmgJaA9DCB6NQ/0uC2ZAlIaUUpRoFU3oA2gWR0CSurRTCLuQdX2UKGgGaAloD0MII0xRLo1QX0CUhpRSlGgVTegDaBZHQJLBh3fQ8fV1fZQoaAZoCWgPQwjAe0eNCcRgQJSGlFKUaBVN6ANoFkdAksJdfoicG3V9lChoBmgJaA9DCGYv207bWGZAlIaUUpRoFU3oA2gWR0CSxbwqiGnGdX2UKGgGaAloD0MIiQj/ImiyZECUhpRSlGgVTegDaBZHQJLLRiobXH11fZQoaAZoCWgPQwiEKjV7oEReQJSGlFKUaBVN6ANoFkdAks3cdT5wfnV9lChoBmgJaA9DCBGnk2z1T2JAlIaUUpRoFU3oA2gWR0CS0sp4rz5HdX2UKGgGaAloD0MIOsrBbALkYkCUhpRSlGgVTegDaBZHQJLVjGT9sJp1fZQoaAZoCWgPQwjUR+APP3pjQJSGlFKUaBVN6ANoFkdAkvBcQd0aInV9lChoBmgJaA9DCMGLvoI031hAlIaUUpRoFU3oA2gWR0CS8TMj/uLKdX2UKGgGaAloD0MIRUjdzj7VZUCUhpRSlGgVTegDaBZHQJLyqlMyrPt1fZQoaAZoCWgPQwiHhzB+mpJlQJSGlFKUaBVN6ANoFkdAkvjpHiFTN3V9lChoBmgJaA9DCLbbLjRXum9AlIaUUpRoFU1fAmgWR0CS+2rNW2gGdX2UKGgGaAloD0MI4ExMF2LMZ0CUhpRSlGgVTegDaBZHQJL7kysS00F1fZQoaAZoCWgPQwioABjPoNNgQJSGlFKUaBVN6ANoFkdAkwPIwZflZHV9lChoBmgJaA9DCE+WWu8391xAlIaUUpRoFU3oA2gWR0CTBR9dNWU9dX2UKGgGaAloD0MIxca8jrhDYECUhpRSlGgVTegDaBZHQJMH7qs2ehB1fZQoaAZoCWgPQwjlKEAUTDtkQJSGlFKUaBVN6ANoFkdAkwtDRD1GsnV9lChoBmgJaA9DCFzlCYSdIGFAlIaUUpRoFU3oA2gWR0CTFle3hGYsdX2UKGgGaAloD0MIxTwraUUUaECUhpRSlGgVTegDaBZHQJMaGcFyJbd1fZQoaAZoCWgPQwisOUAwR1MwQJSGlFKUaBVNDQFoFkdAkxsyHRCx/3V9lChoBmgJaA9DCN9qnbicamJAlIaUUpRoFU3oA2gWR0CTH2ZXMhX9dX2UKGgGaAloD0MIRb3g0xwhYkCUhpRSlGgVTegDaBZHQJMhwaxX4j91fZQoaAZoCWgPQwh9CKpGr2djQJSGlFKUaBVN6ANoFkdAkyV9iUgSvnV9lChoBmgJaA9DCDduMT+3YWdAlIaUUpRoFU3oA2gWR0CTJ0qkdmxudX2UKGgGaAloD0MIvmiPF9JZPECUhpRSlGgVTRABaBZHQJMoQtPHktF1fZQoaAZoCWgPQwh1P6cgv5tiQJSGlFKUaBVN6ANoFkdAkyshAbADaHV9lChoBmgJaA9DCE0ychb2mGJAlIaUUpRoFU3oA2gWR0CTK+HG0eEJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebffe10c0d6dd8534639e38de40289ea9f4a4e7016e82727c22e588b448ea7af
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc73ad9d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc73ad9dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc73ad9e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc73ad9ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efc73ad9f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efc73add040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc73add0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc73add160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efc73add1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc73add280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc73add310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc73add3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7efc73ad8420>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676145845051695847,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrz5r3J3+g+Zn1cPj59R74KkYw9AigyPQAAAAAAAAAAsxw9vTO8UT+ivrE9czmavqaWhzyhqhI+AAAAAAAAAABmKAc8XEt1ugzSBbrg0bE1CHVHu/AxHDkAAIA/AACAP814OjyuuZO6QoBvOgZZCjU9ctI6OqiKuQAAgD8AAIA/M/y7PFYoNT+mAxi9rDO4vkfHfr1OKdO9AAAAAAAAAADNCA+97ha1P6K9Lr9pFJe8F06wPOTXjTsAAAAAAAAAAICCSr0UWJq6II97ufykBbRfMYa64VaQOAAAgD8AAIA/Mw/zvLjOgLlafY85ab0ZNf1u/TvB7aq4AACAPwAAgD+acY88768UPebaiLpdmi2+IVqqPF+fuD0AAAAAAAAAAADOXz3s4c653IYkN2aPi7BZVfC7FuNDtgAAgD8AAIA/Zp3JvCkAILpC3oA6Ud03NWo6Jjpch5a5AACAPwAAgD/TpSY+dMGUvPjYf7odkrg4nLIAvjSWrTkAAIA/AACAP8YmPj4AmZY+QsSHvTEtUb5zlcg8CKjVuwAAAAAAAAAAzULKPY8qMbrlXwu5WnqAs9W9JztqDiE4AACAPwAAgD9mG8S9H0eyP+pR5r55ZJa+XtUJvsJhY74AAAAAAAAAAE3Rs71cSzO6/ehPO9tTjDg6/zS5aYCYuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUYL+Qg+2YkCUhpRSlIwBbJRN6AOMAXSUR0CRZ6Nke6qbdX2UKGgGaAloD0MIcf+R6VCBZUCUhpRSlGgVTegDaBZHQJFxQtBfKIV1fZQoaAZoCWgPQwgoK4arA4g5QJSGlFKUaBVL62gWR0CRdEqQRwqBdX2UKGgGaAloD0MIthK6S2JAZkCUhpRSlGgVTegDaBZHQJF1plPJq7B1fZQoaAZoCWgPQwhh+8kYHw1cQJSGlFKUaBVN6ANoFkdAkXbT6zmfXnV9lChoBmgJaA9DCGuZDMfzHmNAlIaUUpRoFU3oA2gWR0CReg7ZnL7odX2UKGgGaAloD0MIlNxhE5kPYkCUhpRSlGgVTegDaBZHQJF7wmAskIJ1fZQoaAZoCWgPQwiADvPlBa5YQJSGlFKUaBVN6ANoFkdAkX2d4qwyI3V9lChoBmgJaA9DCMGr5c7MA2VAlIaUUpRoFU3oA2gWR0CRfmAJswcpdX2UKGgGaAloD0MI5Pc2/dknPkCUhpRSlGgVS+JoFkdAkYGD7l7tzHV9lChoBmgJaA9DCAtdiUD1vzlAlIaUUpRoFUvgaBZHQJGGp5WzWwx1fZQoaAZoCWgPQwi70jJS78ZiQJSGlFKUaBVN6ANoFkdAkYhtATqSo3V9lChoBmgJaA9DCPK1Z5YEaFBAlIaUUpRoFU0GAWgWR0CRi+igTRICdX2UKGgGaAloD0MIl5APerZ/ZUCUhpRSlGgVTegDaBZHQJGROaG5+Yt1fZQoaAZoCWgPQwhPXI5XIP1hQJSGlFKUaBVN6ANoFkdAkaZQYgq3E3V9lChoBmgJaA9DCN5Wem02eGJAlIaUUpRoFU3oA2gWR0CRqgudPLxJdX2UKGgGaAloD0MI3NrC89L3ZUCUhpRSlGgVTegDaBZHQJGsGneizs11fZQoaAZoCWgPQwh5Xb9gN8ZmQJSGlFKUaBVN6ANoFkdAka7z7yhBaHV9lChoBmgJaA9DCGsnSkIiNGJAlIaUUpRoFU3oA2gWR0CRscdz4k/sdX2UKGgGaAloD0MI9gfKbftqY0CUhpRSlGgVTegDaBZHQJG0N/c32mJ1fZQoaAZoCWgPQwhdbjDUYTNLQJSGlFKUaBVNAAFoFkdAkbx3qAz55HV9lChoBmgJaA9DCIMXfQVpg2VAlIaUUpRoFU3oA2gWR0CRviR5C4SZdX2UKGgGaAloD0MI5J8ZxIcwYUCUhpRSlGgVTegDaBZHQJHBsVVPva11fZQoaAZoCWgPQwieJjPeVnRhQJSGlFKUaBVN6ANoFkdAkcTr1mJ3xHV9lChoBmgJaA9DCIVcqWdBNF5AlIaUUpRoFU3oA2gWR0CRzW8DSw4bdX2UKGgGaAloD0MIgQhx5ezIZECUhpRSlGgVTegDaBZHQJHObK9wm3R1fZQoaAZoCWgPQwipoKLqV3VkQJSGlFKUaBVN6ANoFkdAkdLYsiB5HHV9lChoBmgJaA9DCK99Ab3w5mVAlIaUUpRoFU3oA2gWR0CR2FThYNiIdX2UKGgGaAloD0MINq5/1+efYUCUhpRSlGgVTegDaBZHQJHZ3oRqXWx1fZQoaAZoCWgPQwh0m3CvzClmQJSGlFKUaBVN6ANoFkdAkdv+hwl0HXV9lChoBmgJaA9DCHu9++M93WNAlIaUUpRoFU3oA2gWR0CR31/nnuAqdX2UKGgGaAloD0MI9E9wsaLQXUCUhpRSlGgVTegDaBZHQJH0qx3V0911fZQoaAZoCWgPQwjFGi5yz3ljQJSGlFKUaBVN6ANoFkdAkfnBChN/OXV9lChoBmgJaA9DCJDdBUqKIGFAlIaUUpRoFU3oA2gWR0CR/LrK/20zdX2UKGgGaAloD0MIc6CH2rZ8YkCUhpRSlGgVTegDaBZHQJIEFgSeyzJ1fZQoaAZoCWgPQwiXxcTmYy1lQJSGlFKUaBVN6ANoFkdAkgbCmhufmXV9lChoBmgJaA9DCLHBwkka7WBAlIaUUpRoFU3oA2gWR0CSDx5Pdl/ZdX2UKGgGaAloD0MIxoUDIVlqZECUhpRSlGgVTegDaBZHQJIQa4YrJ8x1fZQoaAZoCWgPQwhS0y6mGeZnQJSGlFKUaBVN6ANoFkdAkhM3CoCMgnV9lChoBmgJaA9DCB8Svve3C2VAlIaUUpRoFU3oA2gWR0CSFZ2DQJHBdX2UKGgGaAloD0MIDTM0ngjoYUCUhpRSlGgVTegDaBZHQJIcm9AX2uh1fZQoaAZoCWgPQwiDhv4JLldhQJSGlFKUaBVN6ANoFkdAkh2BGQSzxHV9lChoBmgJaA9DCIvh6gAInWNAlIaUUpRoFU3oA2gWR0CSIUwcHWz4dX2UKGgGaAloD0MIkrHa/L9tYECUhpRSlGgVTegDaBZHQJIl9zS1E3N1fZQoaAZoCWgPQwikHMwmQMZiQJSGlFKUaBVN6ANoFkdAkidbfk3juXV9lChoBmgJaA9DCFkyx/Kue2NAlIaUUpRoFU3oA2gWR0CSKheIl+mWdX2UKGgGaAloD0MIwTi4dExBZECUhpRSlGgVTegDaBZHQJIv2RMewLV1fZQoaAZoCWgPQwjXbVD7rSdmQJSGlFKUaBVN6ANoFkdAkjKDfR/mT3V9lChoBmgJaA9DCDoi36XUG2RAlIaUUpRoFU3oA2gWR0CSS+OmixmkdX2UKGgGaAloD0MIoHB2a5niRECUhpRSlGgVTQoBaBZHQJJMu6iCaql1fZQoaAZoCWgPQwipoKLqV05jQJSGlFKUaBVN6ANoFkdAkk4w4n4O+nV9lChoBmgJaA9DCLe0GhJ3UWNAlIaUUpRoFU3oA2gWR0CSVDK7ZnL8dX2UKGgGaAloD0MIeCY0SaxWYUCUhpRSlGgVTegDaBZHQJJW5BJI1+B1fZQoaAZoCWgPQwiyDkdXafxjQJSGlFKUaBVN6ANoFkdAkl+Son8baXV9lChoBmgJaA9DCFFqL6Lt7WJAlIaUUpRoFU3oA2gWR0CSYPxOLzf8dX2UKGgGaAloD0MInfS+8TUUZ0CUhpRSlGgVTegDaBZHQJJlACU5dW11fZQoaAZoCWgPQwhbJO1Gn8JlQJSGlFKUaBVN6ANoFkdAkmiPg3tKI3V9lChoBmgJaA9DCDwVcM/z4GFAlIaUUpRoFU3oA2gWR0CSchGqPwNLdX2UKGgGaAloD0MIJ4QOugT+ZECUhpRSlGgVTegDaBZHQJJy2pAD7qJ1fZQoaAZoCWgPQwjXTL7ZZtdkQJSGlFKUaBVN6ANoFkdAknZWLP2PDHV9lChoBmgJaA9DCGoSvCGNQWBAlIaUUpRoFU3oA2gWR0CSfC3H7xd6dX2UKGgGaAloD0MIYCNJEK7AZkCUhpRSlGgVTegDaBZHQJJ+wZl4C6p1fZQoaAZoCWgPQwiki00rhRteQJSGlFKUaBVN6ANoFkdAkoLMdT5wfnV9lChoBmgJaA9DCApNEkvKwGBAlIaUUpRoFU3oA2gWR0CShLf8/D+BdX2UKGgGaAloD0MIXf3YJD8ZYUCUhpRSlGgVTegDaBZHQJKdNcry1/l1fZQoaAZoCWgPQwgjEoWWdWhcQJSGlFKUaBVN6ANoFkdAkp5dg0CRwXV9lChoBmgJaA9DCFMhHokXcGFAlIaUUpRoFU3oA2gWR0CSoHKfFrEcdX2UKGgGaAloD0MIRWRYxRsVX0CUhpRSlGgVTegDaBZHQJKou67NB4V1fZQoaAZoCWgPQwjiOVtA6CxmQJSGlFKUaBVN6ANoFkdAkqt52ll9SnV9lChoBmgJaA9DCJCg+DHmYV1AlIaUUpRoFU3oA2gWR0CSs/tRvWH2dX2UKGgGaAloD0MI3Zp0WyLMYUCUhpRSlGgVTegDaBZHQJK1ZWluWKN1fZQoaAZoCWgPQwgk7UYfcwBhQJSGlFKUaBVN6ANoFkdAkrhRnBciW3V9lChoBmgJaA9DCB6NQ/0uC2ZAlIaUUpRoFU3oA2gWR0CSurRTCLuQdX2UKGgGaAloD0MII0xRLo1QX0CUhpRSlGgVTegDaBZHQJLBh3fQ8fV1fZQoaAZoCWgPQwjAe0eNCcRgQJSGlFKUaBVN6ANoFkdAksJdfoicG3V9lChoBmgJaA9DCGYv207bWGZAlIaUUpRoFU3oA2gWR0CSxbwqiGnGdX2UKGgGaAloD0MIiQj/ImiyZECUhpRSlGgVTegDaBZHQJLLRiobXH11fZQoaAZoCWgPQwiEKjV7oEReQJSGlFKUaBVN6ANoFkdAks3cdT5wfnV9lChoBmgJaA9DCBGnk2z1T2JAlIaUUpRoFU3oA2gWR0CS0sp4rz5HdX2UKGgGaAloD0MIOsrBbALkYkCUhpRSlGgVTegDaBZHQJLVjGT9sJp1fZQoaAZoCWgPQwjUR+APP3pjQJSGlFKUaBVN6ANoFkdAkvBcQd0aInV9lChoBmgJaA9DCMGLvoI031hAlIaUUpRoFU3oA2gWR0CS8TMj/uLKdX2UKGgGaAloD0MIRUjdzj7VZUCUhpRSlGgVTegDaBZHQJLyqlMyrPt1fZQoaAZoCWgPQwiHhzB+mpJlQJSGlFKUaBVN6ANoFkdAkvjpHiFTN3V9lChoBmgJaA9DCLbbLjRXum9AlIaUUpRoFU1fAmgWR0CS+2rNW2gGdX2UKGgGaAloD0MI4ExMF2LMZ0CUhpRSlGgVTegDaBZHQJL7kysS00F1fZQoaAZoCWgPQwioABjPoNNgQJSGlFKUaBVN6ANoFkdAkwPIwZflZHV9lChoBmgJaA9DCE+WWu8391xAlIaUUpRoFU3oA2gWR0CTBR9dNWU9dX2UKGgGaAloD0MIxca8jrhDYECUhpRSlGgVTegDaBZHQJMH7qs2ehB1fZQoaAZoCWgPQwjlKEAUTDtkQJSGlFKUaBVN6ANoFkdAkwtDRD1GsnV9lChoBmgJaA9DCFzlCYSdIGFAlIaUUpRoFU3oA2gWR0CTFle3hGYsdX2UKGgGaAloD0MIxTwraUUUaECUhpRSlGgVTegDaBZHQJMaGcFyJbd1fZQoaAZoCWgPQwisOUAwR1MwQJSGlFKUaBVNDQFoFkdAkxsyHRCx/3V9lChoBmgJaA9DCN9qnbicamJAlIaUUpRoFU3oA2gWR0CTH2ZXMhX9dX2UKGgGaAloD0MIRb3g0xwhYkCUhpRSlGgVTegDaBZHQJMhwaxX4j91fZQoaAZoCWgPQwh9CKpGr2djQJSGlFKUaBVN6ANoFkdAkyV9iUgSvnV9lChoBmgJaA9DCDduMT+3YWdAlIaUUpRoFU3oA2gWR0CTJ0qkdmxudX2UKGgGaAloD0MIvmiPF9JZPECUhpRSlGgVTRABaBZHQJMoQtPHktF1fZQoaAZoCWgPQwh1P6cgv5tiQJSGlFKUaBVN6ANoFkdAkyshAbADaHV9lChoBmgJaA9DCE0ychb2mGJAlIaUUpRoFU3oA2gWR0CTK+HG0eEJdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40944f7d41019e2b5f77425b70b6d79c9f873fee194214e53864c7aa553ddefd
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e28ac3fa849d7a5e942e6c6208b3bda83e01879d8d4aeff53849debd208df4fd
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 238.81117404354706, "std_reward": 43.99014730111095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T20:25:32.498130"}