--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -170.55 +/- 73.01 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'f': '/root/.local/share/jupyter/runtime/kernel-1742be3a-c9d5-4f9b-9f75-4156f724ad10.json' 'gym_id': 'LunarLander-v2' 'env_id': 'LunarLander-v2' 'learning_rate': 0.00025 'seed': 1 'total_timesteps': 100000 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'ppo-implementation-details' 'wandb_entity': None 'capture_video': False 'num_envs': 8 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'batch_size': 1024 'minibatch_size': 256} ```