update Imp-v1.5-4B-phi3
Browse files- README copy.md +0 -96
- README.md +92 -0
- config.json +1 -1
README copy.md
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
pipeline_tag: text-generation
|
4 |
-
datasets:
|
5 |
-
- liuhaotian/LLaVA-Pretrain
|
6 |
-
- liuhaotian/LLaVA-Instruct-150K
|
7 |
-
---
|
8 |
-
# π Imp
|
9 |
-
|
10 |
-
> A very small man can cast a very large shadow.
|
11 |
-
>
|
12 |
-
> ββ*George R.R. Martin, A Clash of Kings*
|
13 |
-
|
14 |
-
|
15 |
-
\[Technical report (coming soon)\] [[Demo](https://xmbot.net/imp/)\] [[Github](https://github.com/MILVLG/imp)\]
|
16 |
-
|
17 |
-
## Introduction
|
18 |
-
|
19 |
-
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `imp-v1.5-4b` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
20 |
-
|
21 |
-
As shown in the Table below, `imp-v1.5-4b` significantly outperforms the counterparts of similar model sizes on various multimodal benchmarks.
|
22 |
-
|
23 |
-
|
24 |
-
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
25 |
-
|
26 |
-
|
27 |
-
## How to use
|
28 |
-
|
29 |
-
|
30 |
-
**Install dependencies**
|
31 |
-
```bash
|
32 |
-
pip install transformers # latest version is ok, but we recommend v4.36.0
|
33 |
-
pip install -q pillow accelerate einops
|
34 |
-
```
|
35 |
-
|
36 |
-
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). A Colab page to run this example is provided [here](https://colab.research.google.com/drive/1EBYky6xIPjnlPppo2gZaiNK6gEsjXgom?usp=drive_link#scrollTo=2-VpU6QzWCVZ). Note that the example can only be run on GPUs currently.
|
37 |
-
|
38 |
-
```Python
|
39 |
-
import torch
|
40 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
-
from PIL import Image
|
42 |
-
|
43 |
-
torch.set_default_device("cuda")
|
44 |
-
|
45 |
-
#Create model
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
"MILVLG/imp-v1.5-4b",
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
device_map="auto",
|
50 |
-
trust_remote_code=True)
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1.5-4b", trust_remote_code=True)
|
52 |
-
|
53 |
-
#Set inputs
|
54 |
-
text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
|
55 |
-
image = Image.open("images/bus.jpg")
|
56 |
-
|
57 |
-
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
58 |
-
image_tensor = model.image_preprocess(image)
|
59 |
-
|
60 |
-
#Generate the answer
|
61 |
-
output_ids = model.generate(
|
62 |
-
input_ids,
|
63 |
-
max_new_tokens=100,
|
64 |
-
images=image_tensor,
|
65 |
-
use_cache=True)[0]
|
66 |
-
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
67 |
-
```
|
68 |
-
|
69 |
-
## Model evaluation
|
70 |
-
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing MSLMs of similar model sizes.
|
71 |
-
|
72 |
-
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
73 |
-
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
74 |
-
| imp-v1.5-4b| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
|
75 |
-
<!-- | [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | 63.00| 68.40 |58.20| 86.40 | 1476.9 | 66.10 |- |30.2| -->
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
## License
|
80 |
-
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
|
81 |
-
|
82 |
-
## About us
|
83 |
-
This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou Dianzi University (HDU) led by Prof. Zhou Yu and Jun Yu, and is mainly developed by Zhenwei Shao and Xuecheng Ouyang. We hope our model may serve as a strong baseline to inspire future research on MSLM, as well as its derivative applications on mobile devices and robots.
|
84 |
-
|
85 |
-
## Citation
|
86 |
-
|
87 |
-
If you use our model or refer our work in your studies, please cite:
|
88 |
-
|
89 |
-
```bibtex
|
90 |
-
@misc{imp2024,
|
91 |
-
author = {Shao, Zhenwei and Ouyang, Xuecheng and Yu, Zhou and Yu, Jun},
|
92 |
-
title = {Imp: An Emprical Study of Multimodal Small Language Models},
|
93 |
-
year = {2024},
|
94 |
-
url = {https://huggingface.co/MILVLG/imp-v1-3b}
|
95 |
-
}
|
96 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,3 +1,95 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
datasets:
|
5 |
+
- liuhaotian/LLaVA-Pretrain
|
6 |
+
- liuhaotian/LLaVA-Instruct-150K
|
7 |
---
|
8 |
+
# π Imp
|
9 |
+
|
10 |
+
> A very small man can cast a very large shadow.
|
11 |
+
>
|
12 |
+
> ββ*George R.R. Martin, A Clash of Kings*
|
13 |
+
|
14 |
+
|
15 |
+
\[Technical report (coming soon)\] [[Demo](https://xmbot.net/imp/)\] [[Github](https://github.com/MILVLG/imp)\]
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our ``Imp-v1.5-4B-Phi3`` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
24 |
+
|
25 |
+
|
26 |
+
## How to use
|
27 |
+
|
28 |
+
|
29 |
+
**Install dependencies**
|
30 |
+
```bash
|
31 |
+
pip install transformers # latest version is ok, but we recommend v4.36.0
|
32 |
+
pip install -q pillow accelerate einops
|
33 |
+
```
|
34 |
+
|
35 |
+
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). A Colab page to run this example is provided [here](https://colab.research.google.com/drive/1EBYky6xIPjnlPppo2gZaiNK6gEsjXgom?usp=drive_link#scrollTo=2-VpU6QzWCVZ). Note that the example can only be run on GPUs currently.
|
36 |
+
|
37 |
+
```Python
|
38 |
+
import torch
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
from PIL import Image
|
41 |
+
|
42 |
+
torch.set_default_device("cuda")
|
43 |
+
|
44 |
+
#Create model
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
"MILVLG/imp-v1.5-4b",
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
device_map="auto",
|
49 |
+
trust_remote_code=True)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1.5-4b", trust_remote_code=True)
|
51 |
+
|
52 |
+
#Set inputs
|
53 |
+
text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
|
54 |
+
image = Image.open("images/bus.jpg")
|
55 |
+
|
56 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
57 |
+
image_tensor = model.image_preprocess(image)
|
58 |
+
|
59 |
+
#Generate the answer
|
60 |
+
output_ids = model.generate(
|
61 |
+
input_ids,
|
62 |
+
max_new_tokens=100,
|
63 |
+
images=image_tensor,
|
64 |
+
use_cache=True)[0]
|
65 |
+
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
66 |
+
```
|
67 |
+
|
68 |
+
## Model evaluation
|
69 |
+
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing MSLMs of similar model sizes.
|
70 |
+
|
71 |
+
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
72 |
+
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
73 |
+
| Imp-v1.5-4B-Phi3| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
|
74 |
+
<!-- | [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | 63.00| 68.40 |58.20| 86.40 | 1476.9 | 66.10 |- |30.2| -->
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
## License
|
79 |
+
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
|
80 |
+
|
81 |
+
## About us
|
82 |
+
This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou Dianzi University (HDU) led by Prof. Zhou Yu and Jun Yu, and is mainly developed by Zhenwei Shao and Xuecheng Ouyang. We hope our model may serve as a strong baseline to inspire future research on MSLM, as well as its derivative applications on mobile devices and robots.
|
83 |
+
|
84 |
+
## Citation
|
85 |
+
|
86 |
+
If you use our model or refer our work in your studies, please cite:
|
87 |
+
|
88 |
+
```bibtex
|
89 |
+
@misc{imp2024,
|
90 |
+
author = {Shao, Zhenwei and Ouyang, Xuecheng and Yu, Zhou and Yu, Jun},
|
91 |
+
title = {Imp: An Emprical Study of Multimodal Small Language Models},
|
92 |
+
year = {2024},
|
93 |
+
url = {https://huggingface.co/MILVLG/imp-v1-3b}
|
94 |
+
}
|
95 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "MILVLG/
|
3 |
"activation_function": "gelu_new",
|
4 |
"architectures": [
|
5 |
"ImpPhi3ForCausalLM"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "MILVLG/Imp-v1.5-4B-Phi3",
|
3 |
"activation_function": "gelu_new",
|
4 |
"architectures": [
|
5 |
"ImpPhi3ForCausalLM"
|