Text Generation
Transformers
Safetensors
imp_phi3
conversational
custom_code
Oyoy1235 commited on
Commit
deb3590
1 Parent(s): 251a62f

update readme

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -12,7 +12,7 @@ datasets:
12
 
13
  ## Introduction
14
 
15
- The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
16
 
17
 
18
  We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
@@ -61,7 +61,7 @@ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True
61
  ```
62
 
63
  ## Model evaluation
64
- We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing MSLMs of similar model sizes.
65
 
66
  | Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
67
  |:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
 
12
 
13
  ## Introduction
14
 
15
+ The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong lightweight LMMs with only **4B** parameters, which is build upon [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
16
 
17
 
18
  We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
 
61
  ```
62
 
63
  ## Model evaluation
64
+ We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing lightweight LMMs of similar model sizes.
65
 
66
  | Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
67
  |:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|