--- license: apache-2.0 pipeline_tag: text-generation datasets: - liuhaotian/LLaVA-Pretrain - liuhaotian/LLaVA-Instruct-150K --- # 😈 Imp \[[Paper](https://arxiv.org/abs/2405.12107)\]  [[Demo](https://xmbot.net/imp/)\]  [[Github](https://github.com/MILVLG/imp)\] ## Introduction The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong lightweight LMMs with only **4B** parameters, which is build upon [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset. We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :) ## How to use **Install dependencies** ```bash pip install transformers # latest version is ok, but we recommend v4.36.0 pip install -q pillow accelerate einops ``` You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). Note that the example can only be run on GPUs currently. ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image torch.set_default_device("cuda") #Create model model = AutoModelForCausalLM.from_pretrained( "MILVLG/Imp-v1.5-4B-Phi3", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-4B-Phi3", trust_remote_code=True) #Set inputs text = "<|user|>\n\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n" image = Image.open("images/bus.jpg") input_ids = tokenizer(text, return_tensors='pt').input_ids image_tensor = model.image_preprocess(image) #Generate the answer output_ids = model.generate( input_ids, max_new_tokens=100, images=image_tensor, use_cache=True)[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()) ``` ## Model evaluation We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing lightweight LMMs of similar model sizes. | Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet| |:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:| | Bunny-v1.0-4B| 4B | **81.5** |**63.5** | 75.1|- | 86.7| 1495.2 |**73.5** |-|-| | **Imp-v1.5-4B-Phi3**| 4B | **81.5** | **63.5** | **78.0**|60.2 | **86.9**| **1507.7** |73.3 |61.1|44.6| ## License This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details. ## Citation If you use our model or refer our work in your studies, please cite: ```bibtex @article{imp2024, title={Imp: Highly Capable Large Multimodal Models for Mobile Devices}, author={Shao, Zhenwei and Yu, Zhou and Yu, Jun and Ouyang, Xuecheng and Zheng, Lihao and Gai, Zhenbiao and Wang, Mingyang and Ding, Jiajun}, journal={arXiv preprint arXiv:2405.12107}, year={2024} } ```