Text Generation
Transformers
Safetensors
imp
custom_code
MILVLG commited on
Commit
03f5aa0
β€’
1 Parent(s): cf5e052

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -4,10 +4,10 @@ language:
4
  - en
5
  pipeline_tag: visual-question-answering
6
  ---
7
- # 😈 IMP
8
 
9
 
10
- The 😈 IMP project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `imp-v0-3b` is a strong MSLM with only **3B** parameters, which is build upon a small yet powerful SLM [Phi-2 ](https://huggingface.co/microsoft/phi-2)(2.7B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on the [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) training set.
11
 
12
  As shown in the Table below, `imp-v0-3b` significantly outperforms the counterparts of similar model sizes, and even achieves slightly better performance than the strong LLaVA-7B model on various multimodal benchmarks.
13
 
@@ -49,7 +49,7 @@ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True
49
  ```
50
 
51
  ## Model evaluation
52
- We perform evaluation on 8 commonly-used benchmarks to validate the effectiveness of our model, including 5 academic VQA benchmarks and 3 recent MLLM benchmarks.
53
 
54
  | Models | Size | VQAv2 | GQA |VisWiz | SQA (IMG) | TextVQA | POPE | MME | MMB |MM-Vet|
55
  |:--------:|:-----:|:----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|
 
4
  - en
5
  pipeline_tag: visual-question-answering
6
  ---
7
+ # 😈Imp
8
 
9
 
10
+ The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `imp-v0-3b` is a strong MSLM with only **3B** parameters, which is build upon a small yet powerful SLM [Phi-2 ](https://huggingface.co/microsoft/phi-2)(2.7B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on the [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) training set.
11
 
12
  As shown in the Table below, `imp-v0-3b` significantly outperforms the counterparts of similar model sizes, and even achieves slightly better performance than the strong LLaVA-7B model on various multimodal benchmarks.
13
 
 
49
  ```
50
 
51
  ## Model evaluation
52
+ We perform evaluation on 9 commonly-used benchmarks to validate the effectiveness of our model, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks.
53
 
54
  | Models | Size | VQAv2 | GQA |VisWiz | SQA (IMG) | TextVQA | POPE | MME | MMB |MM-Vet|
55
  |:--------:|:-----:|:----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|