Text Generation
Transformers
Safetensors
imp
custom_code
Oyoy1235 commited on
Commit
a134646
1 Parent(s): a895cd8
Files changed (2) hide show
  1. README.md +64 -0
  2. md.py +0 -25
README.md CHANGED
@@ -1,3 +1,67 @@
1
  ---
2
  license: apache-2.0
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: Multimodal Small Language Model, Phi-2, VQA
6
  ---
7
+ # :smiling_imp: IMP
8
+
9
+ The :smiling_imp: IMP project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our `IMP-v0-3B` model is a strong MSLM with only **3B** parameters, which is build upon a small yet powerful SLM [Phi-2 ](https://huggingface.co/microsoft/phi-2)(2.7B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on the [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA) training set.
10
+
11
+ As shown in the Table below, `IMP-v0-3B` significantly outperforms the counterparts of similar model sizes, and even achieves slightly better performance than the strong LLaVA-7B model on various multimodal benchmarks.
12
+
13
+ We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
14
+
15
+ ## How to use
16
+
17
+ You can use the following code for model inference. We minimize the required dependency libraries that only the `transformers` and `torch` packages are used. The format of text instructions is similar to [LLaVA](https://github.com/haotian-liu/LLaVA).
18
+
19
+ ```Python
20
+ import torch
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer
22
+ from PIL import Image
23
+
24
+ torch.set_default_device("cuda")
25
+
26
+ #Create model
27
+ model = AutoModelForCausalLM.from_pretrained(
28
+ "milvlg/imp-v0",
29
+ torch_dtype=torch.float16,
30
+ device_map="auto",
31
+ trust_remote_code=True)
32
+ tokenizer = AutoTokenizer.from_pretrained("milvlg/imp-v0", trust_remote_code=True)
33
+
34
+ #Set inputs
35
+ text = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are the colors of the bus in the image? ASSISTANT:"
36
+ image = Image.open("images/bus.jpg")
37
+
38
+ input_ids = tokenizer(text, return_tensors='pt').input_ids
39
+ image_tensor = model.process_images([image])
40
+
41
+ #Generate the answer
42
+ output_ids = model.generate(
43
+ input_ids,
44
+ max_new_tokens=100,
45
+ images=image_tensor,
46
+ use_cache=True)[0]
47
+ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
48
+ ```
49
+
50
+ ## Model evaluation
51
+ We perform evaluation on 8 commonly-used benchmarks to validate the effectiveness of our model, including 5 academic VQA benchmarks and 3 recent MLLM benchmarks.
52
+
53
+ | Models | Size | VQAv2 | GQA |VisWiz | SQA (IMG) | TextVQA | POPE | MME | MMB |MM-Vet|
54
+ |:--------:|:-----:|:----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|
55
+ | [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | **63.00** |47.80 | 68.40 |58.20| 86.40 | **1476.9** | 66.10 |30.2|
56
+ | [TinyGPT-V](https://huggingface.co/Tyrannosaurus/TinyGPT-V) | 3B | - | 33.60 | 24.80 | - | - | -| - | - |-|
57
+ | [LLaVA-Phi](https://arxiv.org/pdf/2401.02330.pdf) | 3B | 71.40 | - | 35.90 | 68.40 | 48.60 | 85.00 | 1335.1 | 59.80 |28.9|
58
+ | [MobileVLM](https://huggingface.co/mtgv/MobileVLM-3B) | 3B | - | 59.00 | - | 61.00 | 47.50 | 84.90 | 1288.9 | 59.60 |-|
59
+ | [MC-LLaVA-3b](https://huggingface.co/visheratin/MC-LLaVA-3b) | 3B | 64.24 | 49.6 | 24.88 | - | 38.59 | 80.59 | - | - |-|
60
+ | **IMP-v0 (ours)** | 3B | **79.45** | 58.55 | **50.09** |**69.96**| **59.38** | **88.02**| 1434 | **66.49** |**33.1**|
61
+
62
+
63
+ ## License
64
+ This project is licensed under the Apache License 2.0 - see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
65
+
66
+ ## About us
67
+ Project :smiling_imp: IMP is maintained by the [MILVLG](https://github.com/MILVLG) group led by Prof. Zhou Yu and Jun Yu, and mainly developed by Zhenwei Shao and Xuecheng Ouyang. We hope our model may server as a strong baseline to inspire future research on MSLMs and derivative applications on mobile devices and robotics.
md.py DELETED
@@ -1,25 +0,0 @@
1
- import torch
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- from PIL import Image
4
-
5
- torch.set_default_device("cuda")
6
-
7
- model = AutoModelForCausalLM.from_pretrained(
8
- "../Imp-v0-3b",
9
- torch_dtype=torch.float16,
10
- device_map="auto",
11
- trust_remote_code=True)
12
- tokenizer = AutoTokenizer.from_pretrained("../Imp-v0-3b", trust_remote_code=True)
13
-
14
- text = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are the colors of the bus in the image? ASSISTANT:"
15
- image = Image.open("images/bus.jpg")
16
-
17
- input_ids = tokenizer(text, return_tensors='pt').input_ids
18
- image_tensor = model.image_preprocess(image)
19
-
20
- output_ids = model.generate(
21
- input_ids,
22
- max_new_tokens=100,
23
- images=image_tensor,
24
- use_cache=True)[0]
25
- print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())