liyucheng commited on
Commit
266ae09
·
verified ·
1 Parent(s): 67b5de2

Upload folder using huggingface_hub

Browse files
Qwen2.5-3B-512k-lc-39iters/.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 36,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 32768,
21
+ "tie_word_embeddings": true,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.40.1",
24
+ "use_cache": true,
25
+ "use_mrope": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
Qwen2.5-3B-512k-lc-39iters/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 524288,
13
+ "rope_scaling": {
14
+ "factor": 16.0,
15
+ "original_max_position_embeddings": 32768,
16
+ "type": "yarn"
17
+ },
18
+ "max_window_layers": 36,
19
+ "model_type": "qwen2",
20
+ "num_attention_heads": 16,
21
+ "num_hidden_layers": 36,
22
+ "num_key_value_heads": 2,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_theta": 1000000.0,
25
+ "sliding_window": 32768,
26
+ "tie_word_embeddings": true,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.40.1",
29
+ "use_cache": true,
30
+ "use_mrope": false,
31
+ "use_sliding_window": false,
32
+ "vocab_size": 151936
33
+ }
Qwen2.5-3B-512k-lc-39iters/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": false,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.37.0"
7
+ }
Qwen2.5-3B-512k-lc-39iters/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dc5a84b779e84f2ef9e3b08c537833d9caf2fa3ed4d980a882b9fd4a0a5c71d
3
+ size 4957560304
Qwen2.5-3B-512k-lc-39iters/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68d0807cd96bc96d54d00bdb02561e5d7b82c7931a44cca30ae5250913171092
3
+ size 1214366696
Qwen2.5-3B-512k-lc-39iters/model.safetensors.index.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6171877376
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors"
440
+ }
441
+ }
Qwen2.5-3B-512k-lc-39iters/modeling_qwen2.py ADDED
@@ -0,0 +1,1136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/qwen2/modular_qwen2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_qwen2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from typing import Callable, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
14
+ from transformers.generation import GenerationMixin
15
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
16
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ SequenceClassifierOutputWithPast,
21
+ QuestionAnsweringModelOutput,
22
+ TokenClassifierOutput,
23
+ )
24
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
25
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
26
+ from transformers.processing_utils import Unpack
27
+ from transformers.utils import (
28
+ LossKwargs,
29
+ add_code_sample_docstrings,
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ replace_return_docstrings,
34
+ )
35
+ from transformers.utils.deprecation import deprecate_kwarg
36
+ from .configuration_qwen2 import Qwen2Config
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
42
+ _CONFIG_FOR_DOC = "Qwen2Config"
43
+
44
+ QWEN_ATTN_FUNCS = ALL_ATTENTION_FUNCTIONS.copy()
45
+
46
+ class Qwen2MLP(nn.Module):
47
+ def __init__(self, config):
48
+ super().__init__()
49
+ self.config = config
50
+ self.hidden_size = config.hidden_size
51
+ self.intermediate_size = config.intermediate_size
52
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
53
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
54
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
55
+ self.act_fn = ACT2FN[config.hidden_act]
56
+
57
+ def forward(self, x):
58
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
59
+ return down_proj
60
+
61
+
62
+ def rotate_half(x):
63
+ """Rotates half the hidden dims of the input."""
64
+ x1 = x[..., : x.shape[-1] // 2]
65
+ x2 = x[..., x.shape[-1] // 2 :]
66
+ return torch.cat((-x2, x1), dim=-1)
67
+
68
+
69
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
70
+ """Applies Rotary Position Embedding to the query and key tensors.
71
+
72
+ Args:
73
+ q (`torch.Tensor`): The query tensor.
74
+ k (`torch.Tensor`): The key tensor.
75
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
76
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
77
+ position_ids (`torch.Tensor`, *optional*):
78
+ Deprecated and unused.
79
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
80
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
81
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
82
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
83
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
84
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
85
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
86
+ Returns:
87
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
88
+ """
89
+ cos = cos.unsqueeze(unsqueeze_dim)
90
+ sin = sin.unsqueeze(unsqueeze_dim)
91
+ q_embed = (q * cos) + (rotate_half(q) * sin)
92
+ k_embed = (k * cos) + (rotate_half(k) * sin)
93
+ return q_embed, k_embed
94
+
95
+
96
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
97
+ """
98
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
99
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
100
+ """
101
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
102
+ if n_rep == 1:
103
+ return hidden_states
104
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
105
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
106
+
107
+
108
+ def eager_attention_forward(
109
+ module: nn.Module,
110
+ query: torch.Tensor,
111
+ key: torch.Tensor,
112
+ value: torch.Tensor,
113
+ attention_mask: Optional[torch.Tensor],
114
+ scaling: float,
115
+ dropout: float = 0.0,
116
+ **kwargs,
117
+ ):
118
+ key_states = repeat_kv(key, module.num_key_value_groups)
119
+ value_states = repeat_kv(value, module.num_key_value_groups)
120
+
121
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
122
+ if attention_mask is not None:
123
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
124
+ attn_weights = attn_weights + causal_mask
125
+
126
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
127
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
128
+ attn_output = torch.matmul(attn_weights, value_states)
129
+ attn_output = attn_output.transpose(1, 2).contiguous()
130
+
131
+ return attn_output, attn_weights
132
+
133
+
134
+ class Qwen2Attention(nn.Module):
135
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
136
+
137
+ def __init__(self, config: Qwen2Config, layer_idx: int):
138
+ super().__init__()
139
+ self.config = config
140
+ self.layer_idx = layer_idx
141
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
142
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
143
+ self.scaling = self.head_dim**-0.5
144
+ self.attention_dropout = config.attention_dropout
145
+ self.is_causal = True
146
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
147
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
148
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
149
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
150
+
151
+ def forward(
152
+ self,
153
+ hidden_states: torch.Tensor,
154
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
155
+ attention_mask: Optional[torch.Tensor],
156
+ past_key_value: Optional[Cache] = None,
157
+ cache_position: Optional[torch.LongTensor] = None,
158
+ **kwargs: Unpack[FlashAttentionKwargs],
159
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
160
+ input_shape = hidden_states.shape[:-1]
161
+ hidden_shape = (*input_shape, -1, self.head_dim)
162
+
163
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
164
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
165
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
166
+
167
+ cos, sin = position_embeddings
168
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
169
+
170
+ if past_key_value is not None:
171
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
172
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
173
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
174
+
175
+ sliding_window = None
176
+ if (
177
+ self.config.use_sliding_window
178
+ and getattr(self.config, "sliding_window", None) is not None
179
+ and self.layer_idx >= self.config.max_window_layers
180
+ ):
181
+ sliding_window = self.config.sliding_window
182
+
183
+ attention_interface: Callable = eager_attention_forward
184
+ if self.config._attn_implementation != "eager":
185
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
186
+ logger.warning_once(
187
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
188
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
189
+ )
190
+ else:
191
+ attention_interface = QWEN_ATTN_FUNCS[self.config._attn_implementation]
192
+
193
+ attn_output, attn_weights = attention_interface(
194
+ self,
195
+ query_states,
196
+ key_states,
197
+ value_states,
198
+ attention_mask,
199
+ dropout=0.0 if not self.training else self.attention_dropout,
200
+ scaling=self.scaling,
201
+ sliding_window=sliding_window, # main diff with Llama
202
+ **kwargs,
203
+ )
204
+
205
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
206
+ attn_output = self.o_proj(attn_output)
207
+ return attn_output, attn_weights
208
+
209
+
210
+ class Qwen2RMSNorm(nn.Module):
211
+ def __init__(self, hidden_size, eps=1e-6):
212
+ """
213
+ Qwen2RMSNorm is equivalent to T5LayerNorm
214
+ """
215
+ super().__init__()
216
+ self.weight = nn.Parameter(torch.ones(hidden_size))
217
+ self.variance_epsilon = eps
218
+
219
+ def forward(self, hidden_states):
220
+ input_dtype = hidden_states.dtype
221
+ hidden_states = hidden_states.to(torch.float32)
222
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
223
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
224
+ return self.weight * hidden_states.to(input_dtype)
225
+
226
+ def extra_repr(self):
227
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
228
+
229
+
230
+ class Qwen2DecoderLayer(nn.Module):
231
+ def __init__(self, config: Qwen2Config, layer_idx: int):
232
+ super().__init__()
233
+ self.hidden_size = config.hidden_size
234
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
235
+ self.mlp = Qwen2MLP(config)
236
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
237
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
238
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
239
+ logger.warning_once(
240
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
241
+ "unexpected results may be encountered."
242
+ )
243
+
244
+ def forward(
245
+ self,
246
+ hidden_states: torch.Tensor,
247
+ attention_mask: Optional[torch.Tensor] = None,
248
+ position_ids: Optional[torch.LongTensor] = None,
249
+ past_key_value: Optional[Cache] = None,
250
+ output_attentions: Optional[bool] = False,
251
+ use_cache: Optional[bool] = False,
252
+ cache_position: Optional[torch.LongTensor] = None,
253
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
254
+ **kwargs: Unpack[FlashAttentionKwargs],
255
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
256
+ residual = hidden_states
257
+
258
+ hidden_states = self.input_layernorm(hidden_states)
259
+
260
+ # Self Attention
261
+ hidden_states, self_attn_weights = self.self_attn(
262
+ hidden_states=hidden_states,
263
+ attention_mask=attention_mask,
264
+ position_ids=position_ids,
265
+ past_key_value=past_key_value,
266
+ output_attentions=output_attentions,
267
+ use_cache=use_cache,
268
+ cache_position=cache_position,
269
+ position_embeddings=position_embeddings,
270
+ **kwargs,
271
+ )
272
+ hidden_states = residual + hidden_states
273
+
274
+ # Fully Connected
275
+ residual = hidden_states
276
+ hidden_states = self.post_attention_layernorm(hidden_states)
277
+ hidden_states = self.mlp(hidden_states)
278
+ hidden_states = residual + hidden_states
279
+
280
+ outputs = (hidden_states,)
281
+ if output_attentions:
282
+ outputs += (self_attn_weights,)
283
+
284
+ return outputs
285
+
286
+
287
+ class Qwen2RotaryEmbedding(nn.Module):
288
+ def __init__(self, config: Qwen2Config, device=None):
289
+ super().__init__()
290
+ # BC: "rope_type" was originally "type"
291
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
292
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
293
+ else:
294
+ self.rope_type = "default"
295
+ self.max_seq_len_cached = config.max_position_embeddings
296
+ self.original_max_seq_len = config.max_position_embeddings
297
+
298
+ self.config = config
299
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
300
+
301
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
302
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
303
+ self.original_inv_freq = self.inv_freq
304
+
305
+ def _dynamic_frequency_update(self, position_ids, device):
306
+ """
307
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
308
+ 1 - growing beyond the cached sequence length (allow scaling)
309
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
310
+ """
311
+ seq_len = torch.max(position_ids) + 1
312
+ if seq_len > self.max_seq_len_cached: # growth
313
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
314
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
315
+ self.max_seq_len_cached = seq_len
316
+
317
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
318
+ # This .to() is needed if the model has been moved to a device after being initialized (because
319
+ # the buffer is automatically moved, but not the original copy)
320
+ self.original_inv_freq = self.original_inv_freq.to(device)
321
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
322
+ self.max_seq_len_cached = self.original_max_seq_len
323
+
324
+ @torch.no_grad()
325
+ def forward(self, x, position_ids):
326
+ if "dynamic" in self.rope_type:
327
+ self._dynamic_frequency_update(position_ids, device=x.device)
328
+
329
+ # Core RoPE block
330
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
331
+ position_ids_expanded = position_ids[:, None, :].float()
332
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
333
+ device_type = x.device.type
334
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
335
+ with torch.autocast(device_type=device_type, enabled=False):
336
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
337
+ emb = torch.cat((freqs, freqs), dim=-1)
338
+ cos = emb.cos()
339
+ sin = emb.sin()
340
+
341
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
342
+ cos = cos * self.attention_scaling
343
+ sin = sin * self.attention_scaling
344
+
345
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
346
+
347
+
348
+ QWEN2_START_DOCSTRING = r"""
349
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
350
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
351
+ etc.)
352
+
353
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
354
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
355
+ and behavior.
356
+
357
+ Parameters:
358
+ config ([`Qwen2Config`]):
359
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
360
+ load the weights associated with the model, only the configuration. Check out the
361
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
362
+ """
363
+
364
+
365
+ @add_start_docstrings(
366
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
367
+ QWEN2_START_DOCSTRING,
368
+ )
369
+ class Qwen2PreTrainedModel(PreTrainedModel):
370
+ config_class = Qwen2Config
371
+ base_model_prefix = "model"
372
+ supports_gradient_checkpointing = True
373
+ _no_split_modules = ["Qwen2DecoderLayer"]
374
+ _skip_keys_device_placement = ["past_key_values"]
375
+ _supports_flash_attn_2 = True
376
+ _supports_sdpa = True
377
+ _supports_flex_attn = True
378
+ _supports_cache_class = True
379
+ _supports_quantized_cache = True
380
+ _supports_static_cache = True
381
+ _supports_attention_backend = True
382
+
383
+ def _init_weights(self, module):
384
+ std = self.config.initializer_range
385
+ if isinstance(module, nn.Linear):
386
+ module.weight.data.normal_(mean=0.0, std=std)
387
+ if module.bias is not None:
388
+ module.bias.data.zero_()
389
+ elif isinstance(module, nn.Embedding):
390
+ module.weight.data.normal_(mean=0.0, std=std)
391
+ if module.padding_idx is not None:
392
+ module.weight.data[module.padding_idx].zero_()
393
+
394
+
395
+ QWEN2_INPUTS_DOCSTRING = r"""
396
+ Args:
397
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
398
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
399
+ it.
400
+
401
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
402
+ [`PreTrainedTokenizer.__call__`] for details.
403
+
404
+ [What are input IDs?](../glossary#input-ids)
405
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
406
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
407
+
408
+ - 1 for tokens that are **not masked**,
409
+ - 0 for tokens that are **masked**.
410
+
411
+ [What are attention masks?](../glossary#attention-mask)
412
+
413
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
414
+ [`PreTrainedTokenizer.__call__`] for details.
415
+
416
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
417
+ `past_key_values`).
418
+
419
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
420
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
421
+ information on the default strategy.
422
+
423
+ - 1 indicates the head is **not masked**,
424
+ - 0 indicates the head is **masked**.
425
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
426
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
427
+ config.n_positions - 1]`.
428
+
429
+ [What are position IDs?](../glossary#position-ids)
430
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
431
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
432
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
433
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
434
+
435
+ Two formats are allowed:
436
+ - a [`~cache_utils.Cache`] instance, see our
437
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
438
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
439
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
440
+ cache format.
441
+
442
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
443
+ legacy cache format will be returned.
444
+
445
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
446
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
447
+ of shape `(batch_size, sequence_length)`.
448
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
449
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
450
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
451
+ model's internal embedding lookup matrix.
452
+ use_cache (`bool`, *optional*):
453
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
454
+ `past_key_values`).
455
+ output_attentions (`bool`, *optional*):
456
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
457
+ tensors for more detail.
458
+ output_hidden_states (`bool`, *optional*):
459
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
460
+ more detail.
461
+ return_dict (`bool`, *optional*):
462
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
463
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
464
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
465
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
466
+ the complete sequence length.
467
+ """
468
+
469
+
470
+ @add_start_docstrings(
471
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
472
+ QWEN2_START_DOCSTRING,
473
+ )
474
+ class Qwen2Model(Qwen2PreTrainedModel):
475
+ """
476
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
477
+
478
+ Args:
479
+ config: Qwen2Config
480
+ """
481
+
482
+ def __init__(self, config: Qwen2Config):
483
+ super().__init__(config)
484
+ self.padding_idx = config.pad_token_id
485
+ self.vocab_size = config.vocab_size
486
+
487
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
488
+ self.layers = nn.ModuleList(
489
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
490
+ )
491
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
492
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
493
+ self.gradient_checkpointing = False
494
+
495
+ # Initialize weights and apply final processing
496
+ self.post_init()
497
+
498
+ def get_input_embeddings(self):
499
+ return self.embed_tokens
500
+
501
+ def set_input_embeddings(self, value):
502
+ self.embed_tokens = value
503
+
504
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
505
+ def forward(
506
+ self,
507
+ input_ids: torch.LongTensor = None,
508
+ attention_mask: Optional[torch.Tensor] = None,
509
+ position_ids: Optional[torch.LongTensor] = None,
510
+ past_key_values: Optional[Cache] = None,
511
+ inputs_embeds: Optional[torch.FloatTensor] = None,
512
+ use_cache: Optional[bool] = None,
513
+ output_attentions: Optional[bool] = None,
514
+ output_hidden_states: Optional[bool] = None,
515
+ return_dict: Optional[bool] = None,
516
+ cache_position: Optional[torch.LongTensor] = None,
517
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
518
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
519
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
520
+ output_hidden_states = (
521
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
522
+ )
523
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
524
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
525
+
526
+ if (input_ids is None) ^ (inputs_embeds is not None):
527
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
528
+
529
+ if self.gradient_checkpointing and self.training and use_cache:
530
+ logger.warning_once(
531
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
532
+ )
533
+ use_cache = False
534
+
535
+ if inputs_embeds is None:
536
+ inputs_embeds = self.embed_tokens(input_ids)
537
+
538
+ if use_cache and past_key_values is None:
539
+ past_key_values = DynamicCache()
540
+
541
+ if cache_position is None:
542
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
543
+ cache_position = torch.arange(
544
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
545
+ )
546
+
547
+ if position_ids is None:
548
+ position_ids = cache_position.unsqueeze(0)
549
+
550
+ causal_mask = self._update_causal_mask(
551
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
552
+ )
553
+
554
+ hidden_states = inputs_embeds
555
+
556
+ # create position embeddings to be shared across the decoder layers
557
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
558
+
559
+ # decoder layers
560
+ all_hidden_states = () if output_hidden_states else None
561
+ all_self_attns = () if output_attentions else None
562
+
563
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
564
+ if output_hidden_states:
565
+ all_hidden_states += (hidden_states,)
566
+
567
+ if self.gradient_checkpointing and self.training:
568
+ layer_outputs = self._gradient_checkpointing_func(
569
+ decoder_layer.__call__,
570
+ hidden_states,
571
+ causal_mask,
572
+ position_ids,
573
+ past_key_values,
574
+ output_attentions,
575
+ use_cache,
576
+ cache_position,
577
+ position_embeddings,
578
+ )
579
+ else:
580
+ layer_outputs = decoder_layer(
581
+ hidden_states,
582
+ attention_mask=causal_mask,
583
+ position_ids=position_ids,
584
+ past_key_value=past_key_values,
585
+ output_attentions=output_attentions,
586
+ use_cache=use_cache,
587
+ cache_position=cache_position,
588
+ position_embeddings=position_embeddings,
589
+ **flash_attn_kwargs,
590
+ )
591
+
592
+ hidden_states = layer_outputs[0]
593
+
594
+ if output_attentions:
595
+ all_self_attns += (layer_outputs[1],)
596
+
597
+ hidden_states = self.norm(hidden_states)
598
+
599
+ # add hidden states from the last decoder layer
600
+ if output_hidden_states:
601
+ all_hidden_states += (hidden_states,)
602
+
603
+ output = BaseModelOutputWithPast(
604
+ last_hidden_state=hidden_states,
605
+ past_key_values=past_key_values if use_cache else None,
606
+ hidden_states=all_hidden_states,
607
+ attentions=all_self_attns,
608
+ )
609
+ return output if return_dict else output.to_tuple()
610
+
611
+ def _update_causal_mask(
612
+ self,
613
+ attention_mask: torch.Tensor,
614
+ input_tensor: torch.Tensor,
615
+ cache_position: torch.Tensor,
616
+ past_key_values: Cache,
617
+ output_attentions: bool,
618
+ ):
619
+ if self.config._attn_implementation == "flash_attention_2":
620
+ if attention_mask is not None and (attention_mask == 0.0).any():
621
+ return attention_mask
622
+ return None
623
+
624
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
625
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
626
+ # to infer the attention mask.
627
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
628
+ using_static_cache = isinstance(past_key_values, StaticCache)
629
+
630
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
631
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
632
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
633
+ attention_mask,
634
+ inputs_embeds=input_tensor,
635
+ past_key_values_length=past_seen_tokens,
636
+ is_training=self.training,
637
+ ):
638
+ return None
639
+
640
+ dtype, device = input_tensor.dtype, input_tensor.device
641
+ sequence_length = input_tensor.shape[1]
642
+ if using_static_cache:
643
+ target_length = past_key_values.get_max_cache_shape()
644
+ else:
645
+ target_length = (
646
+ attention_mask.shape[-1]
647
+ if isinstance(attention_mask, torch.Tensor)
648
+ else past_seen_tokens + sequence_length + 1
649
+ )
650
+
651
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
652
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
653
+ attention_mask,
654
+ sequence_length=sequence_length,
655
+ target_length=target_length,
656
+ dtype=dtype,
657
+ device=device,
658
+ cache_position=cache_position,
659
+ batch_size=input_tensor.shape[0],
660
+ )
661
+
662
+ if (
663
+ self.config._attn_implementation == "sdpa"
664
+ and attention_mask is not None
665
+ and attention_mask.device.type == "cuda"
666
+ and not output_attentions
667
+ ):
668
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
669
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
670
+ # Details: https://github.com/pytorch/pytorch/issues/110213
671
+ min_dtype = torch.finfo(dtype).min
672
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
673
+
674
+ return causal_mask
675
+
676
+ @staticmethod
677
+ def _prepare_4d_causal_attention_mask_with_cache_position(
678
+ attention_mask: torch.Tensor,
679
+ sequence_length: int,
680
+ target_length: int,
681
+ dtype: torch.dtype,
682
+ device: torch.device,
683
+ cache_position: torch.Tensor,
684
+ batch_size: int,
685
+ **kwargs,
686
+ ):
687
+ """
688
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
689
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
690
+
691
+ Args:
692
+ attention_mask (`torch.Tensor`):
693
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
694
+ `(batch_size, 1, query_length, key_value_length)`.
695
+ sequence_length (`int`):
696
+ The sequence length being processed.
697
+ target_length (`int`):
698
+ The target length: when generating with static cache, the mask should be as long as the static cache,
699
+ to account for the 0 padding, the part of the cache that is not filled yet.
700
+ dtype (`torch.dtype`):
701
+ The dtype to use for the 4D attention mask.
702
+ device (`torch.device`):
703
+ The device to plcae the 4D attention mask on.
704
+ cache_position (`torch.Tensor`):
705
+ Indices depicting the position of the input sequence tokens in the sequence.
706
+ batch_size (`torch.Tensor`):
707
+ Batch size.
708
+ """
709
+ if attention_mask is not None and attention_mask.dim() == 4:
710
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
711
+ causal_mask = attention_mask
712
+ else:
713
+ min_dtype = torch.finfo(dtype).min
714
+ causal_mask = torch.full(
715
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
716
+ )
717
+ if sequence_length != 1:
718
+ causal_mask = torch.triu(causal_mask, diagonal=1)
719
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
720
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
721
+ if attention_mask is not None:
722
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
723
+ mask_length = attention_mask.shape[-1]
724
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
725
+ padding_mask = padding_mask == 0
726
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
727
+ padding_mask, min_dtype
728
+ )
729
+
730
+ return causal_mask
731
+
732
+
733
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
734
+
735
+
736
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
737
+ _tied_weights_keys = ["lm_head.weight"]
738
+ _tp_plan = {"lm_head": "colwise_rep"}
739
+
740
+ def __init__(self, config):
741
+ super().__init__(config)
742
+ self.model = Qwen2Model(config)
743
+ self.vocab_size = config.vocab_size
744
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
745
+
746
+ # Initialize weights and apply final processing
747
+ self.post_init()
748
+
749
+ def get_input_embeddings(self):
750
+ return self.model.embed_tokens
751
+
752
+ def set_input_embeddings(self, value):
753
+ self.model.embed_tokens = value
754
+
755
+ def get_output_embeddings(self):
756
+ return self.lm_head
757
+
758
+ def set_output_embeddings(self, new_embeddings):
759
+ self.lm_head = new_embeddings
760
+
761
+ def set_decoder(self, decoder):
762
+ self.model = decoder
763
+
764
+ def get_decoder(self):
765
+ return self.model
766
+
767
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
768
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
769
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
770
+ def forward(
771
+ self,
772
+ input_ids: torch.LongTensor = None,
773
+ attention_mask: Optional[torch.Tensor] = None,
774
+ position_ids: Optional[torch.LongTensor] = None,
775
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
776
+ inputs_embeds: Optional[torch.FloatTensor] = None,
777
+ labels: Optional[torch.LongTensor] = None,
778
+ use_cache: Optional[bool] = None,
779
+ output_attentions: Optional[bool] = None,
780
+ output_hidden_states: Optional[bool] = None,
781
+ return_dict: Optional[bool] = None,
782
+ cache_position: Optional[torch.LongTensor] = None,
783
+ logits_to_keep: Union[int, torch.Tensor] = 0,
784
+ **kwargs: Unpack[KwargsForCausalLM],
785
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
786
+ r"""
787
+ Args:
788
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
789
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
790
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
791
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
792
+
793
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
794
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
795
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
796
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
797
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
798
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
799
+
800
+ Returns:
801
+
802
+ Example:
803
+
804
+ ```python
805
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
806
+
807
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
808
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
809
+
810
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
811
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
812
+
813
+ >>> # Generate
814
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
815
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
816
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
817
+ ```"""
818
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
819
+ output_hidden_states = (
820
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
821
+ )
822
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
823
+
824
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
825
+ outputs = self.model(
826
+ input_ids=input_ids,
827
+ attention_mask=attention_mask,
828
+ position_ids=position_ids,
829
+ past_key_values=past_key_values,
830
+ inputs_embeds=inputs_embeds,
831
+ use_cache=use_cache,
832
+ output_attentions=output_attentions,
833
+ output_hidden_states=output_hidden_states,
834
+ return_dict=return_dict,
835
+ cache_position=cache_position,
836
+ **kwargs,
837
+ )
838
+
839
+ hidden_states = outputs[0]
840
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
841
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
842
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
843
+
844
+ loss = None
845
+ if labels is not None:
846
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
847
+
848
+ if not return_dict:
849
+ output = (logits,) + outputs[1:]
850
+ return (loss,) + output if loss is not None else output
851
+
852
+ return CausalLMOutputWithPast(
853
+ loss=loss,
854
+ logits=logits,
855
+ past_key_values=outputs.past_key_values,
856
+ hidden_states=outputs.hidden_states,
857
+ attentions=outputs.attentions,
858
+ )
859
+
860
+
861
+ @add_start_docstrings(
862
+ """
863
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
864
+
865
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
866
+ (e.g. GPT-2) do.
867
+
868
+ Since it does classification on the last token, it requires to know the position of the last token. If a
869
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
870
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
871
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
872
+ each row of the batch).
873
+ """,
874
+ QWEN2_START_DOCSTRING,
875
+ )
876
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
877
+ def __init__(self, config):
878
+ super().__init__(config)
879
+ self.num_labels = config.num_labels
880
+ self.model = Qwen2Model(config)
881
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
882
+
883
+ # Initialize weights and apply final processing
884
+ self.post_init()
885
+
886
+ def get_input_embeddings(self):
887
+ return self.model.embed_tokens
888
+
889
+ def set_input_embeddings(self, value):
890
+ self.model.embed_tokens = value
891
+
892
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
893
+ def forward(
894
+ self,
895
+ input_ids: Optional[torch.LongTensor] = None,
896
+ attention_mask: Optional[torch.Tensor] = None,
897
+ position_ids: Optional[torch.LongTensor] = None,
898
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
899
+ inputs_embeds: Optional[torch.FloatTensor] = None,
900
+ labels: Optional[torch.LongTensor] = None,
901
+ use_cache: Optional[bool] = None,
902
+ output_attentions: Optional[bool] = None,
903
+ output_hidden_states: Optional[bool] = None,
904
+ return_dict: Optional[bool] = None,
905
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
906
+ r"""
907
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
908
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
909
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
910
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
911
+ """
912
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
913
+
914
+ transformer_outputs = self.model(
915
+ input_ids,
916
+ attention_mask=attention_mask,
917
+ position_ids=position_ids,
918
+ past_key_values=past_key_values,
919
+ inputs_embeds=inputs_embeds,
920
+ use_cache=use_cache,
921
+ output_attentions=output_attentions,
922
+ output_hidden_states=output_hidden_states,
923
+ return_dict=return_dict,
924
+ )
925
+ hidden_states = transformer_outputs[0]
926
+ logits = self.score(hidden_states)
927
+
928
+ if input_ids is not None:
929
+ batch_size = input_ids.shape[0]
930
+ else:
931
+ batch_size = inputs_embeds.shape[0]
932
+
933
+ if self.config.pad_token_id is None and batch_size != 1:
934
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
935
+ if self.config.pad_token_id is None:
936
+ sequence_lengths = -1
937
+ else:
938
+ if input_ids is not None:
939
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
940
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
941
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
942
+ sequence_lengths = sequence_lengths.to(logits.device)
943
+ else:
944
+ sequence_lengths = -1
945
+
946
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
947
+
948
+ loss = None
949
+ if labels is not None:
950
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
951
+
952
+ if not return_dict:
953
+ output = (pooled_logits,) + transformer_outputs[1:]
954
+ return ((loss,) + output) if loss is not None else output
955
+
956
+ return SequenceClassifierOutputWithPast(
957
+ loss=loss,
958
+ logits=pooled_logits,
959
+ past_key_values=transformer_outputs.past_key_values,
960
+ hidden_states=transformer_outputs.hidden_states,
961
+ attentions=transformer_outputs.attentions,
962
+ )
963
+
964
+
965
+ @add_start_docstrings(
966
+ """
967
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
968
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
969
+ """,
970
+ QWEN2_START_DOCSTRING,
971
+ )
972
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
973
+ def __init__(self, config):
974
+ super().__init__(config)
975
+ self.num_labels = config.num_labels
976
+ self.model = Qwen2Model(config)
977
+ if getattr(config, "classifier_dropout", None) is not None:
978
+ classifier_dropout = config.classifier_dropout
979
+ elif getattr(config, "hidden_dropout", None) is not None:
980
+ classifier_dropout = config.hidden_dropout
981
+ else:
982
+ classifier_dropout = 0.1
983
+ self.dropout = nn.Dropout(classifier_dropout)
984
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
985
+
986
+ # Initialize weights and apply final processing
987
+ self.post_init()
988
+
989
+ def get_input_embeddings(self):
990
+ return self.model.embed_tokens
991
+
992
+ def set_input_embeddings(self, value):
993
+ self.model.embed_tokens = value
994
+
995
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
996
+ @add_code_sample_docstrings(
997
+ checkpoint=_CHECKPOINT_FOR_DOC,
998
+ output_type=TokenClassifierOutput,
999
+ config_class=_CONFIG_FOR_DOC,
1000
+ )
1001
+ def forward(
1002
+ self,
1003
+ input_ids: Optional[torch.LongTensor] = None,
1004
+ attention_mask: Optional[torch.Tensor] = None,
1005
+ position_ids: Optional[torch.LongTensor] = None,
1006
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1007
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1008
+ labels: Optional[torch.LongTensor] = None,
1009
+ use_cache: Optional[bool] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, TokenClassifierOutput]:
1014
+ r"""
1015
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1016
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1017
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1018
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1019
+ """
1020
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1021
+
1022
+ outputs = self.model(
1023
+ input_ids,
1024
+ attention_mask=attention_mask,
1025
+ position_ids=position_ids,
1026
+ past_key_values=past_key_values,
1027
+ inputs_embeds=inputs_embeds,
1028
+ use_cache=use_cache,
1029
+ output_attentions=output_attentions,
1030
+ output_hidden_states=output_hidden_states,
1031
+ return_dict=return_dict,
1032
+ )
1033
+ sequence_output = outputs[0]
1034
+ sequence_output = self.dropout(sequence_output)
1035
+ logits = self.score(sequence_output)
1036
+
1037
+ loss = None
1038
+ if labels is not None:
1039
+ loss = self.loss_function(logits, labels, self.config)
1040
+
1041
+ if not return_dict:
1042
+ output = (logits,) + outputs[2:]
1043
+ return ((loss,) + output) if loss is not None else output
1044
+
1045
+ return TokenClassifierOutput(
1046
+ loss=loss,
1047
+ logits=logits,
1048
+ hidden_states=outputs.hidden_states,
1049
+ attentions=outputs.attentions,
1050
+ )
1051
+
1052
+
1053
+ @add_start_docstrings(
1054
+ """
1055
+ The Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
1056
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1057
+ """,
1058
+ QWEN2_START_DOCSTRING,
1059
+ )
1060
+ class Qwen2ForQuestionAnswering(Qwen2PreTrainedModel):
1061
+ base_model_prefix = "transformer"
1062
+
1063
+ def __init__(self, config):
1064
+ super().__init__(config)
1065
+ self.transformer = Qwen2Model(config)
1066
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1067
+
1068
+ # Initialize weights and apply final processing
1069
+ self.post_init()
1070
+
1071
+ def get_input_embeddings(self):
1072
+ return self.transformer.embed_tokens
1073
+
1074
+ def set_input_embeddings(self, value):
1075
+ self.transformer.embed_tokens = value
1076
+
1077
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1078
+ def forward(
1079
+ self,
1080
+ input_ids: Optional[torch.LongTensor] = None,
1081
+ attention_mask: Optional[torch.FloatTensor] = None,
1082
+ position_ids: Optional[torch.LongTensor] = None,
1083
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1084
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1085
+ start_positions: Optional[torch.LongTensor] = None,
1086
+ end_positions: Optional[torch.LongTensor] = None,
1087
+ output_attentions: Optional[bool] = None,
1088
+ output_hidden_states: Optional[bool] = None,
1089
+ return_dict: Optional[bool] = None,
1090
+ **kwargs,
1091
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1092
+ r"""
1093
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1094
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1095
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1096
+ are not taken into account for computing the loss.
1097
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1098
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1099
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1100
+ are not taken into account for computing the loss.
1101
+ """
1102
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1103
+
1104
+ outputs = self.transformer(
1105
+ input_ids,
1106
+ attention_mask=attention_mask,
1107
+ position_ids=position_ids,
1108
+ past_key_values=past_key_values,
1109
+ inputs_embeds=inputs_embeds,
1110
+ output_attentions=output_attentions,
1111
+ output_hidden_states=output_hidden_states,
1112
+ return_dict=return_dict,
1113
+ )
1114
+
1115
+ sequence_output = outputs[0]
1116
+
1117
+ logits = self.qa_outputs(sequence_output)
1118
+ start_logits, end_logits = logits.split(1, dim=-1)
1119
+ start_logits = start_logits.squeeze(-1).contiguous()
1120
+ end_logits = end_logits.squeeze(-1).contiguous()
1121
+
1122
+ loss = None
1123
+ if start_positions is not None and end_positions is not None:
1124
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1125
+
1126
+ if not return_dict:
1127
+ output = (start_logits, end_logits) + outputs[2:]
1128
+ return ((loss,) + output) if loss is not None else output
1129
+
1130
+ return QuestionAnsweringModelOutput(
1131
+ loss=loss,
1132
+ start_logits=start_logits,
1133
+ end_logits=end_logits,
1134
+ hidden_states=outputs.hidden_states,
1135
+ attentions=outputs.attentions,
1136
+ )
Qwen2.5-3B-512k-lc-39iters/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2.5-3B-512k-lc-39iters/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 524288,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
Qwen2.5-3B-512k-lc-39iters/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 524288,
13
+ "rope_scaling": {
14
+ "factor": 16.0,
15
+ "original_max_position_embeddings": 32768,
16
+ "type": "yarn"
17
+ },
18
+ "max_window_layers": 36,
19
+ "model_type": "qwen2",
20
+ "num_attention_heads": 16,
21
+ "num_hidden_layers": 36,
22
+ "num_key_value_heads": 2,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_theta": 1000000.0,
25
+ "sliding_window": 32768,
26
+ "tie_word_embeddings": true,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.40.1",
29
+ "use_cache": true,
30
+ "use_mrope": false,
31
+ "use_sliding_window": false,
32
+ "vocab_size": 151936
33
+ }
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": false,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.37.0"
7
+ }
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/modeling_qwen2.py ADDED
@@ -0,0 +1,1136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/qwen2/modular_qwen2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_qwen2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from typing import Callable, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
14
+ from transformers.generation import GenerationMixin
15
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
16
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ SequenceClassifierOutputWithPast,
21
+ QuestionAnsweringModelOutput,
22
+ TokenClassifierOutput,
23
+ )
24
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
25
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
26
+ from transformers.processing_utils import Unpack
27
+ from transformers.utils import (
28
+ LossKwargs,
29
+ add_code_sample_docstrings,
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ replace_return_docstrings,
34
+ )
35
+ from transformers.utils.deprecation import deprecate_kwarg
36
+ from .configuration_qwen2 import Qwen2Config
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
42
+ _CONFIG_FOR_DOC = "Qwen2Config"
43
+
44
+ QWEN_ATTN_FUNCS = ALL_ATTENTION_FUNCTIONS.copy()
45
+
46
+ class Qwen2MLP(nn.Module):
47
+ def __init__(self, config):
48
+ super().__init__()
49
+ self.config = config
50
+ self.hidden_size = config.hidden_size
51
+ self.intermediate_size = config.intermediate_size
52
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
53
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
54
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
55
+ self.act_fn = ACT2FN[config.hidden_act]
56
+
57
+ def forward(self, x):
58
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
59
+ return down_proj
60
+
61
+
62
+ def rotate_half(x):
63
+ """Rotates half the hidden dims of the input."""
64
+ x1 = x[..., : x.shape[-1] // 2]
65
+ x2 = x[..., x.shape[-1] // 2 :]
66
+ return torch.cat((-x2, x1), dim=-1)
67
+
68
+
69
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
70
+ """Applies Rotary Position Embedding to the query and key tensors.
71
+
72
+ Args:
73
+ q (`torch.Tensor`): The query tensor.
74
+ k (`torch.Tensor`): The key tensor.
75
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
76
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
77
+ position_ids (`torch.Tensor`, *optional*):
78
+ Deprecated and unused.
79
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
80
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
81
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
82
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
83
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
84
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
85
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
86
+ Returns:
87
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
88
+ """
89
+ cos = cos.unsqueeze(unsqueeze_dim)
90
+ sin = sin.unsqueeze(unsqueeze_dim)
91
+ q_embed = (q * cos) + (rotate_half(q) * sin)
92
+ k_embed = (k * cos) + (rotate_half(k) * sin)
93
+ return q_embed, k_embed
94
+
95
+
96
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
97
+ """
98
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
99
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
100
+ """
101
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
102
+ if n_rep == 1:
103
+ return hidden_states
104
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
105
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
106
+
107
+
108
+ def eager_attention_forward(
109
+ module: nn.Module,
110
+ query: torch.Tensor,
111
+ key: torch.Tensor,
112
+ value: torch.Tensor,
113
+ attention_mask: Optional[torch.Tensor],
114
+ scaling: float,
115
+ dropout: float = 0.0,
116
+ **kwargs,
117
+ ):
118
+ key_states = repeat_kv(key, module.num_key_value_groups)
119
+ value_states = repeat_kv(value, module.num_key_value_groups)
120
+
121
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
122
+ if attention_mask is not None:
123
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
124
+ attn_weights = attn_weights + causal_mask
125
+
126
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
127
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
128
+ attn_output = torch.matmul(attn_weights, value_states)
129
+ attn_output = attn_output.transpose(1, 2).contiguous()
130
+
131
+ return attn_output, attn_weights
132
+
133
+
134
+ class Qwen2Attention(nn.Module):
135
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
136
+
137
+ def __init__(self, config: Qwen2Config, layer_idx: int):
138
+ super().__init__()
139
+ self.config = config
140
+ self.layer_idx = layer_idx
141
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
142
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
143
+ self.scaling = self.head_dim**-0.5
144
+ self.attention_dropout = config.attention_dropout
145
+ self.is_causal = True
146
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
147
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
148
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
149
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
150
+
151
+ def forward(
152
+ self,
153
+ hidden_states: torch.Tensor,
154
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
155
+ attention_mask: Optional[torch.Tensor],
156
+ past_key_value: Optional[Cache] = None,
157
+ cache_position: Optional[torch.LongTensor] = None,
158
+ **kwargs: Unpack[FlashAttentionKwargs],
159
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
160
+ input_shape = hidden_states.shape[:-1]
161
+ hidden_shape = (*input_shape, -1, self.head_dim)
162
+
163
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
164
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
165
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
166
+
167
+ cos, sin = position_embeddings
168
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
169
+
170
+ if past_key_value is not None:
171
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
172
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
173
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
174
+
175
+ sliding_window = None
176
+ if (
177
+ self.config.use_sliding_window
178
+ and getattr(self.config, "sliding_window", None) is not None
179
+ and self.layer_idx >= self.config.max_window_layers
180
+ ):
181
+ sliding_window = self.config.sliding_window
182
+
183
+ attention_interface: Callable = eager_attention_forward
184
+ if self.config._attn_implementation != "eager":
185
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
186
+ logger.warning_once(
187
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
188
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
189
+ )
190
+ else:
191
+ attention_interface = QWEN_ATTN_FUNCS[self.config._attn_implementation]
192
+
193
+ attn_output, attn_weights = attention_interface(
194
+ self,
195
+ query_states,
196
+ key_states,
197
+ value_states,
198
+ attention_mask,
199
+ dropout=0.0 if not self.training else self.attention_dropout,
200
+ scaling=self.scaling,
201
+ sliding_window=sliding_window, # main diff with Llama
202
+ **kwargs,
203
+ )
204
+
205
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
206
+ attn_output = self.o_proj(attn_output)
207
+ return attn_output, attn_weights
208
+
209
+
210
+ class Qwen2RMSNorm(nn.Module):
211
+ def __init__(self, hidden_size, eps=1e-6):
212
+ """
213
+ Qwen2RMSNorm is equivalent to T5LayerNorm
214
+ """
215
+ super().__init__()
216
+ self.weight = nn.Parameter(torch.ones(hidden_size))
217
+ self.variance_epsilon = eps
218
+
219
+ def forward(self, hidden_states):
220
+ input_dtype = hidden_states.dtype
221
+ hidden_states = hidden_states.to(torch.float32)
222
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
223
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
224
+ return self.weight * hidden_states.to(input_dtype)
225
+
226
+ def extra_repr(self):
227
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
228
+
229
+
230
+ class Qwen2DecoderLayer(nn.Module):
231
+ def __init__(self, config: Qwen2Config, layer_idx: int):
232
+ super().__init__()
233
+ self.hidden_size = config.hidden_size
234
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
235
+ self.mlp = Qwen2MLP(config)
236
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
237
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
238
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
239
+ logger.warning_once(
240
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
241
+ "unexpected results may be encountered."
242
+ )
243
+
244
+ def forward(
245
+ self,
246
+ hidden_states: torch.Tensor,
247
+ attention_mask: Optional[torch.Tensor] = None,
248
+ position_ids: Optional[torch.LongTensor] = None,
249
+ past_key_value: Optional[Cache] = None,
250
+ output_attentions: Optional[bool] = False,
251
+ use_cache: Optional[bool] = False,
252
+ cache_position: Optional[torch.LongTensor] = None,
253
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
254
+ **kwargs: Unpack[FlashAttentionKwargs],
255
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
256
+ residual = hidden_states
257
+
258
+ hidden_states = self.input_layernorm(hidden_states)
259
+
260
+ # Self Attention
261
+ hidden_states, self_attn_weights = self.self_attn(
262
+ hidden_states=hidden_states,
263
+ attention_mask=attention_mask,
264
+ position_ids=position_ids,
265
+ past_key_value=past_key_value,
266
+ output_attentions=output_attentions,
267
+ use_cache=use_cache,
268
+ cache_position=cache_position,
269
+ position_embeddings=position_embeddings,
270
+ **kwargs,
271
+ )
272
+ hidden_states = residual + hidden_states
273
+
274
+ # Fully Connected
275
+ residual = hidden_states
276
+ hidden_states = self.post_attention_layernorm(hidden_states)
277
+ hidden_states = self.mlp(hidden_states)
278
+ hidden_states = residual + hidden_states
279
+
280
+ outputs = (hidden_states,)
281
+ if output_attentions:
282
+ outputs += (self_attn_weights,)
283
+
284
+ return outputs
285
+
286
+
287
+ class Qwen2RotaryEmbedding(nn.Module):
288
+ def __init__(self, config: Qwen2Config, device=None):
289
+ super().__init__()
290
+ # BC: "rope_type" was originally "type"
291
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
292
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
293
+ else:
294
+ self.rope_type = "default"
295
+ self.max_seq_len_cached = config.max_position_embeddings
296
+ self.original_max_seq_len = config.max_position_embeddings
297
+
298
+ self.config = config
299
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
300
+
301
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
302
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
303
+ self.original_inv_freq = self.inv_freq
304
+
305
+ def _dynamic_frequency_update(self, position_ids, device):
306
+ """
307
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
308
+ 1 - growing beyond the cached sequence length (allow scaling)
309
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
310
+ """
311
+ seq_len = torch.max(position_ids) + 1
312
+ if seq_len > self.max_seq_len_cached: # growth
313
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
314
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
315
+ self.max_seq_len_cached = seq_len
316
+
317
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
318
+ # This .to() is needed if the model has been moved to a device after being initialized (because
319
+ # the buffer is automatically moved, but not the original copy)
320
+ self.original_inv_freq = self.original_inv_freq.to(device)
321
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
322
+ self.max_seq_len_cached = self.original_max_seq_len
323
+
324
+ @torch.no_grad()
325
+ def forward(self, x, position_ids):
326
+ if "dynamic" in self.rope_type:
327
+ self._dynamic_frequency_update(position_ids, device=x.device)
328
+
329
+ # Core RoPE block
330
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
331
+ position_ids_expanded = position_ids[:, None, :].float()
332
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
333
+ device_type = x.device.type
334
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
335
+ with torch.autocast(device_type=device_type, enabled=False):
336
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
337
+ emb = torch.cat((freqs, freqs), dim=-1)
338
+ cos = emb.cos()
339
+ sin = emb.sin()
340
+
341
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
342
+ cos = cos * self.attention_scaling
343
+ sin = sin * self.attention_scaling
344
+
345
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
346
+
347
+
348
+ QWEN2_START_DOCSTRING = r"""
349
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
350
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
351
+ etc.)
352
+
353
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
354
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
355
+ and behavior.
356
+
357
+ Parameters:
358
+ config ([`Qwen2Config`]):
359
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
360
+ load the weights associated with the model, only the configuration. Check out the
361
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
362
+ """
363
+
364
+
365
+ @add_start_docstrings(
366
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
367
+ QWEN2_START_DOCSTRING,
368
+ )
369
+ class Qwen2PreTrainedModel(PreTrainedModel):
370
+ config_class = Qwen2Config
371
+ base_model_prefix = "model"
372
+ supports_gradient_checkpointing = True
373
+ _no_split_modules = ["Qwen2DecoderLayer"]
374
+ _skip_keys_device_placement = ["past_key_values"]
375
+ _supports_flash_attn_2 = True
376
+ _supports_sdpa = True
377
+ _supports_flex_attn = True
378
+ _supports_cache_class = True
379
+ _supports_quantized_cache = True
380
+ _supports_static_cache = True
381
+ _supports_attention_backend = True
382
+
383
+ def _init_weights(self, module):
384
+ std = self.config.initializer_range
385
+ if isinstance(module, nn.Linear):
386
+ module.weight.data.normal_(mean=0.0, std=std)
387
+ if module.bias is not None:
388
+ module.bias.data.zero_()
389
+ elif isinstance(module, nn.Embedding):
390
+ module.weight.data.normal_(mean=0.0, std=std)
391
+ if module.padding_idx is not None:
392
+ module.weight.data[module.padding_idx].zero_()
393
+
394
+
395
+ QWEN2_INPUTS_DOCSTRING = r"""
396
+ Args:
397
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
398
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
399
+ it.
400
+
401
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
402
+ [`PreTrainedTokenizer.__call__`] for details.
403
+
404
+ [What are input IDs?](../glossary#input-ids)
405
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
406
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
407
+
408
+ - 1 for tokens that are **not masked**,
409
+ - 0 for tokens that are **masked**.
410
+
411
+ [What are attention masks?](../glossary#attention-mask)
412
+
413
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
414
+ [`PreTrainedTokenizer.__call__`] for details.
415
+
416
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
417
+ `past_key_values`).
418
+
419
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
420
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
421
+ information on the default strategy.
422
+
423
+ - 1 indicates the head is **not masked**,
424
+ - 0 indicates the head is **masked**.
425
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
426
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
427
+ config.n_positions - 1]`.
428
+
429
+ [What are position IDs?](../glossary#position-ids)
430
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
431
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
432
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
433
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
434
+
435
+ Two formats are allowed:
436
+ - a [`~cache_utils.Cache`] instance, see our
437
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
438
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
439
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
440
+ cache format.
441
+
442
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
443
+ legacy cache format will be returned.
444
+
445
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
446
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
447
+ of shape `(batch_size, sequence_length)`.
448
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
449
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
450
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
451
+ model's internal embedding lookup matrix.
452
+ use_cache (`bool`, *optional*):
453
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
454
+ `past_key_values`).
455
+ output_attentions (`bool`, *optional*):
456
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
457
+ tensors for more detail.
458
+ output_hidden_states (`bool`, *optional*):
459
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
460
+ more detail.
461
+ return_dict (`bool`, *optional*):
462
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
463
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
464
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
465
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
466
+ the complete sequence length.
467
+ """
468
+
469
+
470
+ @add_start_docstrings(
471
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
472
+ QWEN2_START_DOCSTRING,
473
+ )
474
+ class Qwen2Model(Qwen2PreTrainedModel):
475
+ """
476
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
477
+
478
+ Args:
479
+ config: Qwen2Config
480
+ """
481
+
482
+ def __init__(self, config: Qwen2Config):
483
+ super().__init__(config)
484
+ self.padding_idx = config.pad_token_id
485
+ self.vocab_size = config.vocab_size
486
+
487
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
488
+ self.layers = nn.ModuleList(
489
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
490
+ )
491
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
492
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
493
+ self.gradient_checkpointing = False
494
+
495
+ # Initialize weights and apply final processing
496
+ self.post_init()
497
+
498
+ def get_input_embeddings(self):
499
+ return self.embed_tokens
500
+
501
+ def set_input_embeddings(self, value):
502
+ self.embed_tokens = value
503
+
504
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
505
+ def forward(
506
+ self,
507
+ input_ids: torch.LongTensor = None,
508
+ attention_mask: Optional[torch.Tensor] = None,
509
+ position_ids: Optional[torch.LongTensor] = None,
510
+ past_key_values: Optional[Cache] = None,
511
+ inputs_embeds: Optional[torch.FloatTensor] = None,
512
+ use_cache: Optional[bool] = None,
513
+ output_attentions: Optional[bool] = None,
514
+ output_hidden_states: Optional[bool] = None,
515
+ return_dict: Optional[bool] = None,
516
+ cache_position: Optional[torch.LongTensor] = None,
517
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
518
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
519
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
520
+ output_hidden_states = (
521
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
522
+ )
523
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
524
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
525
+
526
+ if (input_ids is None) ^ (inputs_embeds is not None):
527
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
528
+
529
+ if self.gradient_checkpointing and self.training and use_cache:
530
+ logger.warning_once(
531
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
532
+ )
533
+ use_cache = False
534
+
535
+ if inputs_embeds is None:
536
+ inputs_embeds = self.embed_tokens(input_ids)
537
+
538
+ if use_cache and past_key_values is None:
539
+ past_key_values = DynamicCache()
540
+
541
+ if cache_position is None:
542
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
543
+ cache_position = torch.arange(
544
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
545
+ )
546
+
547
+ if position_ids is None:
548
+ position_ids = cache_position.unsqueeze(0)
549
+
550
+ causal_mask = self._update_causal_mask(
551
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
552
+ )
553
+
554
+ hidden_states = inputs_embeds
555
+
556
+ # create position embeddings to be shared across the decoder layers
557
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
558
+
559
+ # decoder layers
560
+ all_hidden_states = () if output_hidden_states else None
561
+ all_self_attns = () if output_attentions else None
562
+
563
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
564
+ if output_hidden_states:
565
+ all_hidden_states += (hidden_states,)
566
+
567
+ if self.gradient_checkpointing and self.training:
568
+ layer_outputs = self._gradient_checkpointing_func(
569
+ decoder_layer.__call__,
570
+ hidden_states,
571
+ causal_mask,
572
+ position_ids,
573
+ past_key_values,
574
+ output_attentions,
575
+ use_cache,
576
+ cache_position,
577
+ position_embeddings,
578
+ )
579
+ else:
580
+ layer_outputs = decoder_layer(
581
+ hidden_states,
582
+ attention_mask=causal_mask,
583
+ position_ids=position_ids,
584
+ past_key_value=past_key_values,
585
+ output_attentions=output_attentions,
586
+ use_cache=use_cache,
587
+ cache_position=cache_position,
588
+ position_embeddings=position_embeddings,
589
+ **flash_attn_kwargs,
590
+ )
591
+
592
+ hidden_states = layer_outputs[0]
593
+
594
+ if output_attentions:
595
+ all_self_attns += (layer_outputs[1],)
596
+
597
+ hidden_states = self.norm(hidden_states)
598
+
599
+ # add hidden states from the last decoder layer
600
+ if output_hidden_states:
601
+ all_hidden_states += (hidden_states,)
602
+
603
+ output = BaseModelOutputWithPast(
604
+ last_hidden_state=hidden_states,
605
+ past_key_values=past_key_values if use_cache else None,
606
+ hidden_states=all_hidden_states,
607
+ attentions=all_self_attns,
608
+ )
609
+ return output if return_dict else output.to_tuple()
610
+
611
+ def _update_causal_mask(
612
+ self,
613
+ attention_mask: torch.Tensor,
614
+ input_tensor: torch.Tensor,
615
+ cache_position: torch.Tensor,
616
+ past_key_values: Cache,
617
+ output_attentions: bool,
618
+ ):
619
+ if self.config._attn_implementation == "flash_attention_2":
620
+ if attention_mask is not None and (attention_mask == 0.0).any():
621
+ return attention_mask
622
+ return None
623
+
624
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
625
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
626
+ # to infer the attention mask.
627
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
628
+ using_static_cache = isinstance(past_key_values, StaticCache)
629
+
630
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
631
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
632
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
633
+ attention_mask,
634
+ inputs_embeds=input_tensor,
635
+ past_key_values_length=past_seen_tokens,
636
+ is_training=self.training,
637
+ ):
638
+ return None
639
+
640
+ dtype, device = input_tensor.dtype, input_tensor.device
641
+ sequence_length = input_tensor.shape[1]
642
+ if using_static_cache:
643
+ target_length = past_key_values.get_max_cache_shape()
644
+ else:
645
+ target_length = (
646
+ attention_mask.shape[-1]
647
+ if isinstance(attention_mask, torch.Tensor)
648
+ else past_seen_tokens + sequence_length + 1
649
+ )
650
+
651
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
652
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
653
+ attention_mask,
654
+ sequence_length=sequence_length,
655
+ target_length=target_length,
656
+ dtype=dtype,
657
+ device=device,
658
+ cache_position=cache_position,
659
+ batch_size=input_tensor.shape[0],
660
+ )
661
+
662
+ if (
663
+ self.config._attn_implementation == "sdpa"
664
+ and attention_mask is not None
665
+ and attention_mask.device.type == "cuda"
666
+ and not output_attentions
667
+ ):
668
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
669
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
670
+ # Details: https://github.com/pytorch/pytorch/issues/110213
671
+ min_dtype = torch.finfo(dtype).min
672
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
673
+
674
+ return causal_mask
675
+
676
+ @staticmethod
677
+ def _prepare_4d_causal_attention_mask_with_cache_position(
678
+ attention_mask: torch.Tensor,
679
+ sequence_length: int,
680
+ target_length: int,
681
+ dtype: torch.dtype,
682
+ device: torch.device,
683
+ cache_position: torch.Tensor,
684
+ batch_size: int,
685
+ **kwargs,
686
+ ):
687
+ """
688
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
689
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
690
+
691
+ Args:
692
+ attention_mask (`torch.Tensor`):
693
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
694
+ `(batch_size, 1, query_length, key_value_length)`.
695
+ sequence_length (`int`):
696
+ The sequence length being processed.
697
+ target_length (`int`):
698
+ The target length: when generating with static cache, the mask should be as long as the static cache,
699
+ to account for the 0 padding, the part of the cache that is not filled yet.
700
+ dtype (`torch.dtype`):
701
+ The dtype to use for the 4D attention mask.
702
+ device (`torch.device`):
703
+ The device to plcae the 4D attention mask on.
704
+ cache_position (`torch.Tensor`):
705
+ Indices depicting the position of the input sequence tokens in the sequence.
706
+ batch_size (`torch.Tensor`):
707
+ Batch size.
708
+ """
709
+ if attention_mask is not None and attention_mask.dim() == 4:
710
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
711
+ causal_mask = attention_mask
712
+ else:
713
+ min_dtype = torch.finfo(dtype).min
714
+ causal_mask = torch.full(
715
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
716
+ )
717
+ if sequence_length != 1:
718
+ causal_mask = torch.triu(causal_mask, diagonal=1)
719
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
720
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
721
+ if attention_mask is not None:
722
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
723
+ mask_length = attention_mask.shape[-1]
724
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
725
+ padding_mask = padding_mask == 0
726
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
727
+ padding_mask, min_dtype
728
+ )
729
+
730
+ return causal_mask
731
+
732
+
733
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
734
+
735
+
736
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
737
+ _tied_weights_keys = ["lm_head.weight"]
738
+ _tp_plan = {"lm_head": "colwise_rep"}
739
+
740
+ def __init__(self, config):
741
+ super().__init__(config)
742
+ self.model = Qwen2Model(config)
743
+ self.vocab_size = config.vocab_size
744
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
745
+
746
+ # Initialize weights and apply final processing
747
+ self.post_init()
748
+
749
+ def get_input_embeddings(self):
750
+ return self.model.embed_tokens
751
+
752
+ def set_input_embeddings(self, value):
753
+ self.model.embed_tokens = value
754
+
755
+ def get_output_embeddings(self):
756
+ return self.lm_head
757
+
758
+ def set_output_embeddings(self, new_embeddings):
759
+ self.lm_head = new_embeddings
760
+
761
+ def set_decoder(self, decoder):
762
+ self.model = decoder
763
+
764
+ def get_decoder(self):
765
+ return self.model
766
+
767
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
768
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
769
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
770
+ def forward(
771
+ self,
772
+ input_ids: torch.LongTensor = None,
773
+ attention_mask: Optional[torch.Tensor] = None,
774
+ position_ids: Optional[torch.LongTensor] = None,
775
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
776
+ inputs_embeds: Optional[torch.FloatTensor] = None,
777
+ labels: Optional[torch.LongTensor] = None,
778
+ use_cache: Optional[bool] = None,
779
+ output_attentions: Optional[bool] = None,
780
+ output_hidden_states: Optional[bool] = None,
781
+ return_dict: Optional[bool] = None,
782
+ cache_position: Optional[torch.LongTensor] = None,
783
+ logits_to_keep: Union[int, torch.Tensor] = 0,
784
+ **kwargs: Unpack[KwargsForCausalLM],
785
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
786
+ r"""
787
+ Args:
788
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
789
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
790
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
791
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
792
+
793
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
794
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
795
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
796
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
797
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
798
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
799
+
800
+ Returns:
801
+
802
+ Example:
803
+
804
+ ```python
805
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
806
+
807
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
808
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
809
+
810
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
811
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
812
+
813
+ >>> # Generate
814
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
815
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
816
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
817
+ ```"""
818
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
819
+ output_hidden_states = (
820
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
821
+ )
822
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
823
+
824
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
825
+ outputs = self.model(
826
+ input_ids=input_ids,
827
+ attention_mask=attention_mask,
828
+ position_ids=position_ids,
829
+ past_key_values=past_key_values,
830
+ inputs_embeds=inputs_embeds,
831
+ use_cache=use_cache,
832
+ output_attentions=output_attentions,
833
+ output_hidden_states=output_hidden_states,
834
+ return_dict=return_dict,
835
+ cache_position=cache_position,
836
+ **kwargs,
837
+ )
838
+
839
+ hidden_states = outputs[0]
840
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
841
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
842
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
843
+
844
+ loss = None
845
+ if labels is not None:
846
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
847
+
848
+ if not return_dict:
849
+ output = (logits,) + outputs[1:]
850
+ return (loss,) + output if loss is not None else output
851
+
852
+ return CausalLMOutputWithPast(
853
+ loss=loss,
854
+ logits=logits,
855
+ past_key_values=outputs.past_key_values,
856
+ hidden_states=outputs.hidden_states,
857
+ attentions=outputs.attentions,
858
+ )
859
+
860
+
861
+ @add_start_docstrings(
862
+ """
863
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
864
+
865
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
866
+ (e.g. GPT-2) do.
867
+
868
+ Since it does classification on the last token, it requires to know the position of the last token. If a
869
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
870
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
871
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
872
+ each row of the batch).
873
+ """,
874
+ QWEN2_START_DOCSTRING,
875
+ )
876
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
877
+ def __init__(self, config):
878
+ super().__init__(config)
879
+ self.num_labels = config.num_labels
880
+ self.model = Qwen2Model(config)
881
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
882
+
883
+ # Initialize weights and apply final processing
884
+ self.post_init()
885
+
886
+ def get_input_embeddings(self):
887
+ return self.model.embed_tokens
888
+
889
+ def set_input_embeddings(self, value):
890
+ self.model.embed_tokens = value
891
+
892
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
893
+ def forward(
894
+ self,
895
+ input_ids: Optional[torch.LongTensor] = None,
896
+ attention_mask: Optional[torch.Tensor] = None,
897
+ position_ids: Optional[torch.LongTensor] = None,
898
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
899
+ inputs_embeds: Optional[torch.FloatTensor] = None,
900
+ labels: Optional[torch.LongTensor] = None,
901
+ use_cache: Optional[bool] = None,
902
+ output_attentions: Optional[bool] = None,
903
+ output_hidden_states: Optional[bool] = None,
904
+ return_dict: Optional[bool] = None,
905
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
906
+ r"""
907
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
908
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
909
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
910
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
911
+ """
912
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
913
+
914
+ transformer_outputs = self.model(
915
+ input_ids,
916
+ attention_mask=attention_mask,
917
+ position_ids=position_ids,
918
+ past_key_values=past_key_values,
919
+ inputs_embeds=inputs_embeds,
920
+ use_cache=use_cache,
921
+ output_attentions=output_attentions,
922
+ output_hidden_states=output_hidden_states,
923
+ return_dict=return_dict,
924
+ )
925
+ hidden_states = transformer_outputs[0]
926
+ logits = self.score(hidden_states)
927
+
928
+ if input_ids is not None:
929
+ batch_size = input_ids.shape[0]
930
+ else:
931
+ batch_size = inputs_embeds.shape[0]
932
+
933
+ if self.config.pad_token_id is None and batch_size != 1:
934
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
935
+ if self.config.pad_token_id is None:
936
+ sequence_lengths = -1
937
+ else:
938
+ if input_ids is not None:
939
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
940
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
941
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
942
+ sequence_lengths = sequence_lengths.to(logits.device)
943
+ else:
944
+ sequence_lengths = -1
945
+
946
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
947
+
948
+ loss = None
949
+ if labels is not None:
950
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
951
+
952
+ if not return_dict:
953
+ output = (pooled_logits,) + transformer_outputs[1:]
954
+ return ((loss,) + output) if loss is not None else output
955
+
956
+ return SequenceClassifierOutputWithPast(
957
+ loss=loss,
958
+ logits=pooled_logits,
959
+ past_key_values=transformer_outputs.past_key_values,
960
+ hidden_states=transformer_outputs.hidden_states,
961
+ attentions=transformer_outputs.attentions,
962
+ )
963
+
964
+
965
+ @add_start_docstrings(
966
+ """
967
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
968
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
969
+ """,
970
+ QWEN2_START_DOCSTRING,
971
+ )
972
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
973
+ def __init__(self, config):
974
+ super().__init__(config)
975
+ self.num_labels = config.num_labels
976
+ self.model = Qwen2Model(config)
977
+ if getattr(config, "classifier_dropout", None) is not None:
978
+ classifier_dropout = config.classifier_dropout
979
+ elif getattr(config, "hidden_dropout", None) is not None:
980
+ classifier_dropout = config.hidden_dropout
981
+ else:
982
+ classifier_dropout = 0.1
983
+ self.dropout = nn.Dropout(classifier_dropout)
984
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
985
+
986
+ # Initialize weights and apply final processing
987
+ self.post_init()
988
+
989
+ def get_input_embeddings(self):
990
+ return self.model.embed_tokens
991
+
992
+ def set_input_embeddings(self, value):
993
+ self.model.embed_tokens = value
994
+
995
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
996
+ @add_code_sample_docstrings(
997
+ checkpoint=_CHECKPOINT_FOR_DOC,
998
+ output_type=TokenClassifierOutput,
999
+ config_class=_CONFIG_FOR_DOC,
1000
+ )
1001
+ def forward(
1002
+ self,
1003
+ input_ids: Optional[torch.LongTensor] = None,
1004
+ attention_mask: Optional[torch.Tensor] = None,
1005
+ position_ids: Optional[torch.LongTensor] = None,
1006
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1007
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1008
+ labels: Optional[torch.LongTensor] = None,
1009
+ use_cache: Optional[bool] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, TokenClassifierOutput]:
1014
+ r"""
1015
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1016
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1017
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1018
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1019
+ """
1020
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1021
+
1022
+ outputs = self.model(
1023
+ input_ids,
1024
+ attention_mask=attention_mask,
1025
+ position_ids=position_ids,
1026
+ past_key_values=past_key_values,
1027
+ inputs_embeds=inputs_embeds,
1028
+ use_cache=use_cache,
1029
+ output_attentions=output_attentions,
1030
+ output_hidden_states=output_hidden_states,
1031
+ return_dict=return_dict,
1032
+ )
1033
+ sequence_output = outputs[0]
1034
+ sequence_output = self.dropout(sequence_output)
1035
+ logits = self.score(sequence_output)
1036
+
1037
+ loss = None
1038
+ if labels is not None:
1039
+ loss = self.loss_function(logits, labels, self.config)
1040
+
1041
+ if not return_dict:
1042
+ output = (logits,) + outputs[2:]
1043
+ return ((loss,) + output) if loss is not None else output
1044
+
1045
+ return TokenClassifierOutput(
1046
+ loss=loss,
1047
+ logits=logits,
1048
+ hidden_states=outputs.hidden_states,
1049
+ attentions=outputs.attentions,
1050
+ )
1051
+
1052
+
1053
+ @add_start_docstrings(
1054
+ """
1055
+ The Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
1056
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1057
+ """,
1058
+ QWEN2_START_DOCSTRING,
1059
+ )
1060
+ class Qwen2ForQuestionAnswering(Qwen2PreTrainedModel):
1061
+ base_model_prefix = "transformer"
1062
+
1063
+ def __init__(self, config):
1064
+ super().__init__(config)
1065
+ self.transformer = Qwen2Model(config)
1066
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1067
+
1068
+ # Initialize weights and apply final processing
1069
+ self.post_init()
1070
+
1071
+ def get_input_embeddings(self):
1072
+ return self.transformer.embed_tokens
1073
+
1074
+ def set_input_embeddings(self, value):
1075
+ self.transformer.embed_tokens = value
1076
+
1077
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1078
+ def forward(
1079
+ self,
1080
+ input_ids: Optional[torch.LongTensor] = None,
1081
+ attention_mask: Optional[torch.FloatTensor] = None,
1082
+ position_ids: Optional[torch.LongTensor] = None,
1083
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1084
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1085
+ start_positions: Optional[torch.LongTensor] = None,
1086
+ end_positions: Optional[torch.LongTensor] = None,
1087
+ output_attentions: Optional[bool] = None,
1088
+ output_hidden_states: Optional[bool] = None,
1089
+ return_dict: Optional[bool] = None,
1090
+ **kwargs,
1091
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1092
+ r"""
1093
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1094
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1095
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1096
+ are not taken into account for computing the loss.
1097
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1098
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1099
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1100
+ are not taken into account for computing the loss.
1101
+ """
1102
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1103
+
1104
+ outputs = self.transformer(
1105
+ input_ids,
1106
+ attention_mask=attention_mask,
1107
+ position_ids=position_ids,
1108
+ past_key_values=past_key_values,
1109
+ inputs_embeds=inputs_embeds,
1110
+ output_attentions=output_attentions,
1111
+ output_hidden_states=output_hidden_states,
1112
+ return_dict=return_dict,
1113
+ )
1114
+
1115
+ sequence_output = outputs[0]
1116
+
1117
+ logits = self.qa_outputs(sequence_output)
1118
+ start_logits, end_logits = logits.split(1, dim=-1)
1119
+ start_logits = start_logits.squeeze(-1).contiguous()
1120
+ end_logits = end_logits.squeeze(-1).contiguous()
1121
+
1122
+ loss = None
1123
+ if start_positions is not None and end_positions is not None:
1124
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1125
+
1126
+ if not return_dict:
1127
+ output = (start_logits, end_logits) + outputs[2:]
1128
+ return ((loss,) + output) if loss is not None else output
1129
+
1130
+ return QuestionAnsweringModelOutput(
1131
+ loss=loss,
1132
+ start_logits=start_logits,
1133
+ end_logits=end_logits,
1134
+ hidden_states=outputs.hidden_states,
1135
+ attentions=outputs.attentions,
1136
+ )
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d09b2db6c61d7fcfb6138dfb03ec8d6796b7a08450713e6538faddf6063f935
3
+ size 6172019146
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 524288,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
Qwen2.5-3B-512k-mi-flexpf_090-39iters-2025041801/vocab.json ADDED
The diff for this file is too large to render. See raw diff