File size: 5,880 Bytes
92521ab
 
 
 
 
 
 
 
 
 
 
 
abff0ca
 
92521ab
 
 
 
 
 
 
abff0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
c621ad2
abff0ca
 
 
92521ab
 
 
 
 
 
 
 
 
6985a4f
92521ab
 
 
 
 
 
19054f0
92521ab
 
 
6985a4f
92521ab
 
 
 
 
 
 
 
 
 
 
 
 
6985a4f
 
 
 
 
 
 
 
 
92521ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6985a4f
92521ab
 
 
 
 
 
 
 
f7e786c
92521ab
 
e3b2b5e
92521ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64ae10
6985a4f
92521ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64ae10
 
92521ab
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: cc-by-nc-sa-4.0
language:
- en
base_model:
- lmms-lab/llava-onevision-qwen2-0.5b-ov
pipeline_tag: video-text-to-text
tags:
- Action
- Video
- MQA
- multimodal
- MLLMs
- LLaVAction
metrics:
- accuracy
library_name: transformers
---

# LLaVAction-0.5B

<div align="center">
<h2>LLaVAction: evaluating and training multi-modal large language models for action recognition
</h2>

[Shaokai Ye](https://yeshaokai.github.io/)<sup>1**</sup>&nbsp; 
[Haozhe Qi](https://people.epfl.ch/haozhe.qi)<sup>1**</sup>&nbsp;

[Alexander Mathis](https://mathislab.org/)<sup>1</sup><sup></sup>&nbsp;
[Mackenzie Weygandt Mathis](https://www.mackenziemathislab.org/mackenziemathis)<sup>1</sup><sup></sup><sup></sup>&nbsp;

<sup>1</sup> EPFL

<sup>**</sup> First authors  <sup></sup> Senior Authors  <sup></sup> Corresponding Author

\[[arXiv Paper](arxiv.org/abs/2503.18712)\] &nbsp; \[[Project Page](https://mmathislab.github.io/llavaction/)\] &nbsp; \[[Github Repo](https://github.com/AdaptiveMotorControlLab/LLaVAction)\] &nbsp; 

</div>

## Model Summary
The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.

- **Project Page**:  [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
- **Repository**:  [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
- **Languages**: English
- 
## Useage

### Intended use
The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.


### Generation
We provide the simple generation process for using our model. For more details, you could refer to our [Github](https://github.com/AdaptiveMotorControlLab/LLaVAction).

```python
!pip install llavaction

from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")

#Your video (it assumes an egocentric view point)
video_path = "XXXX"

#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."


def load_video(video_path, max_frames_num,fps=1,force_sample=False):
    if max_frames_num == 0:
        return np.zeros((1, 336, 336, 3))
    vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
    total_frame_num = len(vr)
    video_time = total_frame_num / vr.get_avg_fps()
    fps = round(vr.get_avg_fps()/fps)
    frame_idx = [i for i in range(0, len(vr), fps)]
    if len(frame_idx) > max_frames_num or force_sample:
        sample_fps = max_frames_num
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        frame_time = [i/vr.get_avg_fps() for i in frame_idx]
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    # import pdb;pdb.set_trace()
    return spare_frames,frame_time,video_time

pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)  # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
    input_ids,
    images=video,
    modalities= ["video"],
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```


## Training

See details in Ye et al. 2025: arxiv.org/abs/2503.18712


### Model
- **Architecture**: SO400M + Qwen2
- **Initialized Model**: lmms-lab/llava-onevision-qwen2-0.5b-ov
- **Data**: EPIC-KITCHENS-100-MQA, 2 epochs, full model
- **Precision**: bfloat16


### Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training)
Orchestration: HuggingFace Trainer
Neural networks:  PyTorch

## Citation

arXiv: arxiv.org/abs/2503.18712

```bibtex
@article{YeQi2025llavaction,
  title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
  author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
  journal={arXiv preprint},
  year={2025}
}
```