File size: 5,880 Bytes
92521ab abff0ca 92521ab abff0ca c621ad2 abff0ca 92521ab 6985a4f 92521ab 19054f0 92521ab 6985a4f 92521ab 6985a4f 92521ab 6985a4f 92521ab f7e786c 92521ab e3b2b5e 92521ab c64ae10 6985a4f 92521ab c64ae10 92521ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: cc-by-nc-sa-4.0
language:
- en
base_model:
- lmms-lab/llava-onevision-qwen2-0.5b-ov
pipeline_tag: video-text-to-text
tags:
- Action
- Video
- MQA
- multimodal
- MLLMs
- LLaVAction
metrics:
- accuracy
library_name: transformers
---
# LLaVAction-0.5B
<div align="center">
<h2>LLaVAction: evaluating and training multi-modal large language models for action recognition
</h2>
[Shaokai Ye](https://yeshaokai.github.io/)<sup>1**</sup>
[Haozhe Qi](https://people.epfl.ch/haozhe.qi)<sup>1**</sup>
[Alexander Mathis](https://mathislab.org/)<sup>1</sup><sup>†</sup>
[Mackenzie Weygandt Mathis](https://www.mackenziemathislab.org/mackenziemathis)<sup>1</sup><sup>†</sup><sup>‡</sup>
<sup>1</sup> EPFL
<sup>**</sup> First authors <sup>†</sup> Senior Authors <sup>‡</sup> Corresponding Author
\[[arXiv Paper](arxiv.org/abs/2503.18712)\] \[[Project Page](https://mmathislab.github.io/llavaction/)\] \[[Github Repo](https://github.com/AdaptiveMotorControlLab/LLaVAction)\]
</div>
## Model Summary
The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
- **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
- **Repository**: [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
- **Languages**: English
-
## Useage
### Intended use
The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.
### Generation
We provide the simple generation process for using our model. For more details, you could refer to our [Github](https://github.com/AdaptiveMotorControlLab/LLaVAction).
```python
!pip install llavaction
from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
#Your video (it assumes an egocentric view point)
video_path = "XXXX"
#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```
## Training
See details in Ye et al. 2025: arxiv.org/abs/2503.18712
### Model
- **Architecture**: SO400M + Qwen2
- **Initialized Model**: lmms-lab/llava-onevision-qwen2-0.5b-ov
- **Data**: EPIC-KITCHENS-100-MQA, 2 epochs, full model
- **Precision**: bfloat16
### Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training)
Orchestration: HuggingFace Trainer
Neural networks: PyTorch
## Citation
arXiv: arxiv.org/abs/2503.18712
```bibtex
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}
``` |