from __future__ import annotations import torch import torch.nn as nn from monai.utils import optional_import from torch.cuda.amp import autocast tqdm, has_tqdm = optional_import("tqdm", name="tqdm") class Sampler: def __init__(self) -> None: super().__init__() @torch.no_grad() def sampling_fn( self, input_noise: torch.Tensor, autoencoder_model: nn.Module, diffusion_model: nn.Module, scheduler: nn.Module, conditioning: torch.Tensor, ) -> torch.Tensor: if has_tqdm: progress_bar = tqdm(scheduler.timesteps) else: progress_bar = iter(scheduler.timesteps) image = input_noise cond_concat = conditioning.squeeze(1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) cond_concat = cond_concat.expand(list(cond_concat.shape[0:2]) + list(input_noise.shape[2:])) for t in progress_bar: with torch.no_grad(): model_output = diffusion_model( torch.cat((image, cond_concat), dim=1), timesteps=torch.Tensor((t,)).to(input_noise.device).long(), context=conditioning, ) image, _ = scheduler.step(model_output, t, image) with torch.no_grad(): with autocast(): sample = autoencoder_model.decode_stage_2_outputs(image) return sample