File size: 11,083 Bytes
38fd365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "b1c9de9d-6777-4a1d-bb7c-c2413d01bd7d",
   "metadata": {},
   "source": [
    "# Generate Data\n",
    "\n",
    "This bundle uses simple synthetic data for training and testing. Using `create_test_image_3d` we'll create images of spheres with labels for each divided into 3 classes distinguished by intensity. The network will be able to train very quickly on this of course but it's for demonstration purposes and your specialised bundle will by modified for your data and its layout. \n",
    "\n",
    "Assuming this notebook is being run from the `docs` directory it will create two new directories in the root of the bundle, `train_data` and `test_data`.\n",
    "\n",
    "First imports:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1e7cb4a8-f91a-4f15-a8aa-3136c2b954d6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import random\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "\n",
    "plt.rcParams[\"image.interpolation\"] = \"none\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b2c3de5-01e5-4578-832b-b24a75d095d5",
   "metadata": {},
   "source": [
    "As shown here, the images are spheres in a 3D volume with associated labels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_images(image_size=128, border=20, shape_probabilities=None, shape_sizes=None):\n",
    "    image = np.zeros((image_size, image_size))\n",
    "\n",
    "    if shape_probabilities is None:\n",
    "        shape_probabilities = [0.25, 0.2, 0.3, 0.25]  # Default probabilities for circle, triangle, rectangle\n",
    "\n",
    "    if shape_sizes is None:\n",
    "        shape_sizes = [(10, 30), (20, 40), (20, 40)]  # Default size ranges for circle, triangle, rectangle\n",
    "\n",
    "    def draw_zero(image):\n",
    "        return image\n",
    "\n",
    "    def draw_circle(image):\n",
    "        center_x, center_y = np.random.randint(border, image_size - border), np.random.randint(border, image_size - border)\n",
    "        radius = np.random.randint(*shape_sizes[0])\n",
    "        y, x = np.ogrid[-center_x:image_size-center_x, -center_y:image_size-center_y]\n",
    "        mask = x ** 2 + y ** 2 <= radius ** 2\n",
    "        image[mask] = 1\n",
    "        return image\n",
    "\n",
    "    def draw_triangle(image):\n",
    "        size = np.random.randint(*shape_sizes[1])\n",
    "        x1, y1 = np.random.randint(border, image_size - border), np.random.randint(border, image_size - border)\n",
    "        x2, y2 = x1 + size, y1\n",
    "        x3, y3 = x1 + size // 2, y1 - int(size * np.sqrt(3) / 2)\n",
    "        triangle = np.array([[x1, x2, x3], [y1, y2, y3]])\n",
    "        mask = plt.matplotlib.path.Path(np.transpose(triangle)).contains_points(\n",
    "            np.array([(i, j) for i in range(image_size) for j in range(image_size)])\n",
    "        )\n",
    "        image[mask.reshape(image_size, image_size)] = 1\n",
    "        return image\n",
    "\n",
    "    def draw_rectangle(image):\n",
    "        x1, y1 = np.random.randint(border, image_size - border), np.random.randint(border, image_size - border)\n",
    "        x2, y2 = x1 + np.random.randint(*shape_sizes[2]), y1 + np.random.randint(*shape_sizes[2])\n",
    "        image[x1:x2, y1:y2] = 1\n",
    "        return image\n",
    "\n",
    "    label, shape = random.choices([(0, draw_zero), (1, draw_circle), (2, draw_triangle), (3, draw_rectangle)], weights=shape_probabilities)[0]\n",
    "    image = shape(image)\n",
    "\n",
    "    return image, label"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAHqCAYAAAAgWrY5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAJ4ElEQVR4nO3dy27cOBRAQXHQ///LnMXAgTO2O51+8UiqWnlhwAQi5OCSeow559wAgJx/Vi8AAPieSANAlEgDQJRIA0CUSANAlEgDQJRIA0CUSANAlEgDQNTl1l8cY7xyHZzIvS+5cw3yLI+8aNF1yLPcch2apAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEg6rJ6AQBzzl8/jzEWroRn+/xvW1e89kQaWGZP/4HDCiINvJ04w21EGngbcYa/48YxAIgySQMvZ4KG+4g08DLiDI8RaeDpxBmeQ6SBpxFneC6RBh4mzvAaIg3cTZzhtUQa+GviDO/hOWkAiDJJAzcxPcP7maSBPxJoWMMkDfxInGEtkQa+EGdoEGlg2zZhhiJn0oBAQ5RIA0CUSAPbGGP1EoBvOJMGtm37PdS2v6HBJA18McYwXUOASAM/EmpYS6SBq0zVsI4zaeAmzqzh/UzSwF8zWcN7iDQARNnuBu7yMU3b+uYauy6PEWngIc6q4XVsdwNPY2qC5xJp4Kk8sgXPI9LAS4g1PE6kgZcSarifG8eAl3NzGdzHJA0AUSINvJWzaridSANLCDX8mUgDy5iq4To3jgHLCTV8zyQNAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBR3t292Jxz9RJ+5H3KAGuZpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEgSqQBIEqkASBKpAEg6rJ6AWc3xli9BACiTNIAEDXmnHP1IgCAr0zSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQdbn1F8cYr1wHJ3Lv11FdgzzLI1/odR3yLLdchyZpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIgSaQCIEmkAiBJpAIi6rF4A7MWcc/USfjTGWL0E4AVM0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQJdIAECXSABAl0gAQdVm9ANiLMcbqJQAnY5IGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCivBf1kzvnrZ6+ABGA1kzQARJmkt98naACoOHWkxRmAstNudws0AHWnmqSFGYA9OUWkxRmAPTp0pMUZgD077Zk0ANQdNtKmaAD27lDb3cIMwJEcItLiDMAR7TrS4gzAke32TFqgATi63UbaV6oAOLrdRnrb/gu1WANwVLuONAAc2SEibZoG4IgOEelts/UNwPHs+hGs73wOtTvAAdizw0zS3zFZA7Bnh470ttkGB2C/Dh/pD0INwN4c7kz6GufVAOzJaSZpANib00baWTUAdaeN9AehBqDq9JHeNlM1AE2nunHsT4QagBKTNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESNOedcvQgA4CuTNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARIk0AESJNABEiTQARF1u/cUxxivXwYnc+3VU1yDP8sgXel2HPMst16FJGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCiRBoAokQaAKIuqxcAAPeYc778b4wxXv43rjFJA0CUSANAlEgDQJRI32DO+ZazDwD4zI1jVwgzACuJ9DfEGYAC290AEGWS/sQEDUCJSG/iDEDTqSMtzgCUnTLS4gzAHpwq0uIMwJ6cItLiDMAeHTrS4gzAnnlOGgCiDhtpUzQAe3fYSK/+UDcAPOqwkd62/0It1gDs1aEj/UGoAdijQ9/d/dnnUDuvBmAPTjFJ/5/JGoA9OGWkAWAPThtpN5UBUHfaSH8QawCqTh/pD0INQM1p7u6+hTvAASgxSf/AZA3AaiJ9hfNqAFay3X0DoQZgBZM0AESJNABEiTQARIk0AESJNABEiTQARHkEC0JWvOnOI4bQZZIGgCiRBoAokQaAKJEGgCiRBoAokQaAKJEGgCjPSQOwS2d4xt8kDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUWPOOVcvAgD4yiQNAFEiDQBRIg0AUSINAFEiDQBRIg0AUSINAFEiDQBRIg0AUf8CeDXUWZWl5zcAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 500x500 with 9 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, axes = plt.subplots(3, 3, figsize=(5, 5))\n",
    "for i, ax in enumerate(axes.flatten()):\n",
    "    for j in range(9):\n",
    "        images, label = generate_images(128)\n",
    "        ax.imshow(images, cmap='gray')\n",
    "        ax.axis('off')\n",
    "plt.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e08c4a1-6630-4ab3-832b-e53face81e35",
   "metadata": {},
   "source": [
    "50 image/label pairs are now generated into the directory `../data/train_data`, assuming this notebook is run from the `docs` directory this will be in the bundle root:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "num_images = 50\n",
    "out_dir = os.path.abspath(\"../data/train_data\")\n",
    "os.makedirs(out_dir, exist_ok=True)\n",
    "\n",
    "train_data = []\n",
    "for i in range(num_images):\n",
    "    data = {}\n",
    "    img, lbl = generate_images(128)\n",
    "    n = nib.Nifti1Image(img, np.eye(4))\n",
    "    train_file_path = os.path.join(out_dir, f\"img{i:02}.nii.gz\")\n",
    "    nib.save(n, train_file_path)\n",
    "\n",
    "    data[\"image\"] = train_file_path\n",
    "    data[\"label\"] = lbl\n",
    "    train_data.append(data)\n",
    "\n",
    "with open(os.path.abspath(\"../data/train_samples.json\"), \"w\") as f:\n",
    "    json.dump(train_data, f, indent=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7fe344f7-d01d-49d5-adca-a7071939ca53",
   "metadata": {},
   "source": [
    "We'll also generate some test data in a separate folder:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "c3b8d8f3-8d73-4657-98f3-5605d4b1bad9",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "num_images = 10\n",
    "out_dir = os.path.abspath(\"../data/test_data\")\n",
    "os.makedirs(out_dir, exist_ok=True)\n",
    "\n",
    "train_data = []\n",
    "for i in range(num_images):\n",
    "    data = {}\n",
    "    img, lbl = generate_images(128)\n",
    "    n = nib.Nifti1Image(img, np.eye(4))\n",
    "    train_file_path = os.path.join(out_dir, f\"img{i:02}.nii.gz\")\n",
    "    nib.save(n, train_file_path)\n",
    "\n",
    "    data[\"image\"] = train_file_path\n",
    "    data[\"label\"] = lbl\n",
    "    train_data.append(data)\n",
    "\n",
    "with open(os.path.abspath(\"../data/test_samples.json\"), \"w\") as f:\n",
    "    json.dump(train_data, f, indent=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "599cff25-4894-481b-aec3-6aedda327a09",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "img00.nii.gz  img02.nii.gz  img04.nii.gz  img06.nii.gz\timg08.nii.gz\n",
      "img01.nii.gz  img03.nii.gz  img05.nii.gz  img07.nii.gz\timg09.nii.gz\n"
     ]
    }
   ],
   "source": [
    "!ls {out_dir}"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}