# This implements the workflow for applying the network to a directory of images and measuring network performance with metrics. | |
# these transforms are used for inference to load and regularise inputs | |
transforms: | |
- _target_: AsDiscreted | |
keys: ['@pred', '@label'] | |
argmax: [true, false] | |
to_onehot: '@num_classes' | |
- _target_: ToTensord | |
keys: ['@pred', '@label'] | |
device: '@device' | |
postprocessing: | |
_target_: Compose | |
transforms: $@transforms | |
# inference handlers to load checkpoint, gather statistics | |
val_handlers: | |
- _target_: CheckpointLoader | |
_disabled_: $not os.path.exists(@ckpt_path) | |
load_path: '@ckpt_path' | |
load_dict: | |
model: '@network' | |
- _target_: StatsHandler | |
name: null # use engine.logger as the Logger object to log to | |
output_transform: '$lambda x: None' | |
- _target_: MetricsSaver | |
save_dir: '@output_dir' | |
metrics: ['val_accuracy'] | |
metric_details: ['val_accuracy'] | |
batch_transform: "$lambda x: [xx['image'].meta for xx in x]" | |
summary_ops: "*" | |
initialize: | |
- "$monai.utils.set_determinism(seed=123)" | |
- "$setattr(torch.backends.cudnn, 'benchmark', True)" | |
run: | |
- [email protected]() | |