{ "imports": [ "$import torch", "$from datetime import datetime", "$from pathlib import Path", "$from transformers import CLIPTextModel", "$from transformers import CLIPTokenizer" ], "bundle_root": ".", "dataset_dir": "", "dataset": "", "evaluator": "", "inferer": "", "load_old": 1, "model_dir": "$@bundle_root + '/models'", "output_dir": "$@bundle_root + '/output'", "create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)", "prompt": "Big right-sided pleural effusion", "prompt_list": "$['', @prompt]", "guidance_scale": 7.0, "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "tokenizer": "$CLIPTokenizer.from_pretrained(\"stabilityai/stable-diffusion-2-1-base\", subfolder=\"tokenizer\")", "text_encoder": "$CLIPTextModel.from_pretrained(\"stabilityai/stable-diffusion-2-1-base\", subfolder=\"text_encoder\")", "tokenized_prompt": "$@tokenizer(@prompt_list, padding=\"max_length\", max_length=@tokenizer.model_max_length, truncation=True,return_tensors=\"pt\")", "prompt_embeds": "$@text_encoder(@tokenized_prompt.input_ids.squeeze(1))[0].to(@device)", "out_file": "$datetime.now().strftime('sample_%H%M%S_%d%m%Y')", "autoencoder_def": { "_target_": "monai.networks.nets.AutoencoderKL", "spatial_dims": 2, "in_channels": 1, "out_channels": 1, "latent_channels": 3, "channels": [ 64, 128, 128, 128 ], "num_res_blocks": 2, "norm_num_groups": 32, "norm_eps": 1e-06, "attention_levels": [ false, false, false, false ], "with_encoder_nonlocal_attn": false, "with_decoder_nonlocal_attn": false }, "network_def": "@diffusion_def", "load_autoencoder_path": "$@model_dir + '/autoencoder.pt'", "load_autoencoder_func": "$@autoencoder_def.load_old_state_dict if bool(@load_old) else @autoencoder_def.load_state_dict", "load_autoencoder": "$@load_autoencoder_func(torch.load(@load_autoencoder_path))", "autoencoder": "$@autoencoder_def.to(@device)", "diffusion_def": { "_target_": "monai.networks.nets.DiffusionModelUNet", "spatial_dims": 2, "in_channels": 3, "out_channels": 3, "channels": [ 256, 512, 768 ], "num_res_blocks": 2, "attention_levels": [ false, true, true ], "norm_num_groups": 32, "norm_eps": 1e-06, "resblock_updown": false, "num_head_channels": [ 0, 512, 768 ], "with_conditioning": true, "transformer_num_layers": 1, "cross_attention_dim": 1024 }, "load_diffusion_path": "$@model_dir + '/model.pt'", "load_diffusion_func": "$@diffusion_def.load_old_state_dict if bool(@load_old) else @diffusion_def.load_state_dict", "load_diffusion": "$@load_diffusion_func(torch.load(@load_diffusion_path))", "diffusion": "$@diffusion_def.to(@device)", "scheduler": { "_target_": "monai.networks.schedulers.DDIMScheduler", "_requires_": [ "@load_diffusion", "@load_autoencoder" ], "beta_start": 0.0015, "beta_end": 0.0205, "num_train_timesteps": 1000, "schedule": "scaled_linear_beta", "prediction_type": "v_prediction", "clip_sample": false }, "noise": "$torch.randn((1, 3, 64, 64)).to(@device)", "set_timesteps": "$@scheduler.set_timesteps(num_inference_steps=50)", "sampler": { "_target_": "scripts.sampler.Sampler", "_requires_": "@set_timesteps" }, "sample": "$@sampler.sampling_fn(@noise, @autoencoder, @diffusion, @scheduler, @prompt_embeds)", "saver": { "_target_": "scripts.saver.JPGSaver", "_requires_": "@create_output_dir", "output_dir": "@output_dir" }, "run": "$@saver.save(@sample, @out_file)", "save": "$torch.save(@sample, @output_dir + '/' + @out_file + '.pt')" }