File size: 11,534 Bytes
7226a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union

import torch
from monai.engines.trainer import Trainer
from monai.engines.utils import IterationEvents, default_metric_cmp_fn
from monai.inferers import Inferer
from monai.transforms import Transform
from monai.utils import IgniteInfo, min_version, optional_import
from monai.utils.enums import CommonKeys as Keys
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader

if TYPE_CHECKING:
    from ignite.engine import Engine, EventEnum
    from ignite.metrics import Metric
else:
    Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
    Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric")
    EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum")

__all__ = ["DetectionTrainer"]


def detection_prepare_batch(
    batchdata: List[Dict[str, torch.Tensor]],
    device: Optional[Union[str, torch.device]] = None,
    non_blocking: bool = False,
    **kwargs,
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]:
    """
    Default function to prepare the data for current iteration.
    Args `batchdata`, `device`, `non_blocking` refer to the ignite API:
    https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html.
    `kwargs` supports other args for `Tensor.to()` API.
    Returns:
        image, label(optional).
    """
    inputs = [
        batch_data_ii["image"].to(device=device, non_blocking=non_blocking, **kwargs)
        for batch_data_i in batchdata
        for batch_data_ii in batch_data_i
    ]

    if isinstance(batchdata[0][0].get(Keys.LABEL), torch.Tensor):
        targets = [
            dict(
                label=batch_data_ii["label"].to(device=device, non_blocking=non_blocking, **kwargs),
                box=batch_data_ii["box"].to(device=device, non_blocking=non_blocking, **kwargs),
            )
            for batch_data_i in batchdata
            for batch_data_ii in batch_data_i
        ]
        return (inputs, targets)
    return inputs, None


class DetectionTrainer(Trainer):
    """
    Supervised detection training method with image and label, inherits from ``Trainer`` and ``Workflow``.
    Args:
        device: an object representing the device on which to run.
        max_epochs: the total epoch number for trainer to run.
        train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader.
        detector: detector to train in the trainer, should be regular PyTorch `torch.nn.Module`.
        optimizer: the optimizer associated to the detector, should be regular PyTorch optimizer from `torch.optim`
            or its subclass.
        epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.
        non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
            with respect to the host. For other cases, this argument has no effect.
        prepare_batch: function to parse expected data (usually `image`,`box`, `label` and other detector args)
            from `engine.state.batch` for every iteration, for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
        iteration_update: the callable function for every iteration, expect to accept `engine`
            and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
            if not provided, use `self._iteration()` instead. for more details please refer to:
            https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
        inferer: inference method that execute model forward on input data, like: SlidingWindow, etc.
        postprocessing: execute additional transformation for the model output data.
            Typically, several Tensor based transforms composed by `Compose`.
        key_train_metric: compute metric when every iteration completed, and save average value to
            engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the
            checkpoint into files.
        additional_metrics: more Ignite metrics that also attach to Ignite Engine.
        metric_cmp_fn: function to compare current key metric with previous best key metric value,
            it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
            `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
        train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
            CheckpointHandler, StatsHandler, etc.
        amp: whether to enable auto-mixed-precision training, default is False.
        event_names: additional custom ignite events that will register to the engine.
            new events can be a list of str or `ignite.engine.events.EventEnum`.
        event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.
            for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html
            #ignite.engine.engine.Engine.register_events.
        decollate: whether to decollate the batch-first data to a list of data after model computation,
            recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
            default to `True`.
        optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
            more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
        to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
            `device`, `non_blocking`.
        amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
    """

    def __init__(
        self,
        device: torch.device,
        max_epochs: int,
        train_data_loader: Iterable | DataLoader,
        detector: torch.nn.Module,
        optimizer: Optimizer,
        epoch_length: int | None = None,
        non_blocking: bool = False,
        prepare_batch: Callable = detection_prepare_batch,
        iteration_update: Callable[[Engine, Any], Any] | None = None,
        inferer: Inferer | None = None,
        postprocessing: Transform | None = None,
        key_train_metric: dict[str, Metric] | None = None,
        additional_metrics: dict[str, Metric] | None = None,
        metric_cmp_fn: Callable = default_metric_cmp_fn,
        train_handlers: Sequence | None = None,
        amp: bool = False,
        event_names: list[str | EventEnum] | None = None,
        event_to_attr: dict | None = None,
        decollate: bool = True,
        optim_set_to_none: bool = False,
        to_kwargs: dict | None = None,
        amp_kwargs: dict | None = None,
    ) -> None:
        super().__init__(
            device=device,
            max_epochs=max_epochs,
            data_loader=train_data_loader,
            epoch_length=epoch_length,
            non_blocking=non_blocking,
            prepare_batch=prepare_batch,
            iteration_update=iteration_update,
            postprocessing=postprocessing,
            key_metric=key_train_metric,
            additional_metrics=additional_metrics,
            metric_cmp_fn=metric_cmp_fn,
            handlers=train_handlers,
            amp=amp,
            event_names=event_names,
            event_to_attr=event_to_attr,
            decollate=decollate,
            to_kwargs=to_kwargs,
            amp_kwargs=amp_kwargs,
        )

        self.detector = detector
        self.optimizer = optimizer
        self.optim_set_to_none = optim_set_to_none

    def _iteration(self, engine, batchdata: dict[str, torch.Tensor]):
        """
        Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine.
        Return below items in a dictionary:
            - IMAGE: image Tensor data for model input, already moved to device.
            - BOX: box regression loss corresponding to the image, already moved to device.
            - LABEL: classification loss corresponding to the image, already moved to device.
            - LOSS: weighted sum of loss values computed by loss function.
        Args:
            engine: `DetectionTrainer` to execute operation for an iteration.
            batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
        Raises:
            ValueError: When ``batchdata`` is None.
        """

        if batchdata is None:
            raise ValueError("Must provide batch data for current iteration.")

        batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)
        if len(batch) == 2:
            inputs, targets = batch
            args: tuple = ()
            kwargs: dict = {}
        else:
            inputs, targets, args, kwargs = batch
        # put iteration outputs into engine.state
        engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: targets}

        def _compute_pred_loss(w_cls: float = 1.0, w_box_reg: float = 1.0):
            """
            Args:
                w_cls: weight of classification loss
                w_box_reg: weight of box regression loss
            """
            outputs = engine.detector(inputs, targets)
            engine.state.output[engine.detector.cls_key] = outputs[engine.detector.cls_key]
            engine.state.output[engine.detector.box_reg_key] = outputs[engine.detector.box_reg_key]
            engine.state.output[Keys.LOSS] = (
                w_cls * outputs[engine.detector.cls_key] + w_box_reg * outputs[engine.detector.box_reg_key]
            )
            engine.fire_event(IterationEvents.LOSS_COMPLETED)

        engine.detector.train()
        engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none)

        if engine.amp and engine.scaler is not None:
            with torch.cuda.amp.autocast(**engine.amp_kwargs):
                inputs = [img.to(torch.float16) for img in inputs]
                _compute_pred_loss()
            engine.scaler.scale(engine.state.output[Keys.LOSS]).backward()
            engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
            engine.scaler.step(engine.optimizer)
            engine.scaler.update()
        else:
            _compute_pred_loss()
            engine.state.output[Keys.LOSS].backward()
            engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
            engine.optimizer.step()

        return engine.state.output