File size: 83,401 Bytes
57decc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "c54f5831-58eb-4f9e-bb8a-2c2a6536a658",
   "metadata": {},
   "source": [
    "# Denoising Diffusion Probabilistic Models with MedNIST Dataset Bundle \n",
    "\n",
    "This notebook discusses and uses the MONAI bundle it's included in for generating images from the MedNIST dataset using diffusion models. This is based off the 2d_ddpm_tutorial_ignite.ipynb notebook with a few changes.\n",
    "\n",
    "The bundle defines training and inference scripts whose use will be described here along with visualisations. The assumption with this notebook is that it's run within the bundle's `docs` directory and that the environment it runs in has `MONAI` installed. The command lines given are known to work in `bash` however may be problematic in Windows.\n",
    "\n",
    "Specifically, we train a diffusion model to generate X-Ray hands (drawn from the MedNIST dataset).\n",
    "\n",
    "First thing to do is import libraries and verify MONAI is present:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6d32f8a4-2bfe-4cfb-9abd-033b0c6080e6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "MONAI version: 1.4.0\n",
      "Numpy version: 1.26.4\n",
      "Pytorch version: 2.5.1+cu124\n",
      "MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False\n",
      "MONAI rev id: 46a5272196a6c2590ca2589029eed8e4d56ff008\n",
      "MONAI __file__: /data/PycharmProjects/monai-model-zoo/venv/lib/python3.10/site-packages/monai/__init__.py\n",
      "\n",
      "Optional dependencies:\n",
      "Pytorch Ignite version: 0.5.1\n",
      "ITK version: 5.4.0\n",
      "Nibabel version: 5.3.2\n",
      "scikit-image version: 0.25.0\n",
      "scipy version: 1.15.1\n",
      "Pillow version: 11.1.0\n",
      "Tensorboard version: 2.18.0\n",
      "gdown version: 5.2.0\n",
      "TorchVision version: NOT INSTALLED or UNKNOWN VERSION.\n",
      "tqdm version: 4.67.1\n",
      "lmdb version: NOT INSTALLED or UNKNOWN VERSION.\n",
      "psutil version: 6.1.1\n",
      "pandas version: 2.2.3\n",
      "einops version: 0.8.0\n",
      "transformers version: 4.48.0\n",
      "mlflow version: NOT INSTALLED or UNKNOWN VERSION.\n",
      "pynrrd version: NOT INSTALLED or UNKNOWN VERSION.\n",
      "clearml version: NOT INSTALLED or UNKNOWN VERSION.\n",
      "\n",
      "For details about installing the optional dependencies, please visit:\n",
      "    https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n",
      "\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import shutil\n",
    "import tempfile\n",
    "from pathlib import Path\n",
    "\n",
    "import torch\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import monai\n",
    "from monai.bundle import ConfigParser\n",
    "\n",
    "# path to the bundle directory, this assumes you're running the notebook in its directory\n",
    "bundle_root = str(Path(\".\").absolute().parent)\n",
    "\n",
    "monai.config.print_config()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d6fc6592-cb51-4527-97ee-add5d1cdbeb4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/tmp/tmpdoc1dv_l\n"
     ]
    }
   ],
   "source": [
    "directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n",
    "dataset_dir = tempfile.mkdtemp() if directory is None else directory\n",
    "print(dataset_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5721b12a-8474-435b-aac2-c0ed054fa618",
   "metadata": {},
   "source": [
    "### Training the diffusion model"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "678d2e51-dc2d-4ad9-a4c0-14a6f900398b",
   "metadata": {},
   "source": [
    "A bundle can be run on the command line using the Fire library or by parsing the configuration manually then getting parsed content objects. The following is the command to train the network for the default number of epochs. It will define values in the config files which need to be set for a particular run, such as the dataset directory created above, and setting the PYTHONPATH variable. The configuration for this bundle is split into 3 yaml files, one each for training (train.yaml) and inference (inference.yaml), and one to enable multi-GPU training (train_multigpu.yaml) which can be combined with the others to enable distributed training."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d52a4ae9-0d6d-4bc4-a5b5-f84470711f2d",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2025-01-28 10:45:10,893 - INFO - --- input summary of monai.bundle.scripts.run ---\n",
      "2025-01-28 10:45:10,894 - INFO - > config_file: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/train.yaml'\n",
      "2025-01-28 10:45:10,894 - INFO - > meta_file: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/metadata.json'\n",
      "2025-01-28 10:45:10,894 - INFO - > logging_file: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/logging.conf'\n",
      "2025-01-28 10:45:10,895 - INFO - > run_id: 'training'\n",
      "2025-01-28 10:45:10,895 - INFO - > bundle_root: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm'\n",
      "2025-01-28 10:45:10,895 - INFO - > dataset_dir: '/tmp/tmpdoc1dv_l'\n",
      "2025-01-28 10:45:10,895 - INFO - > output_dir: './outputs'\n",
      "2025-01-28 10:45:10,895 - INFO - ---\n",
      "\n",
      "\n",
      "2025-01-28 10:45:10,896 - INFO - Setting logging properties based on config: /data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/logging.conf.\n",
      "Detected deprecated name 'optional_packages_version' in configuration file, replacing with 'required_packages_version'.\n",
      "2025-01-28 10:45:16,858 - INFO - Downloaded: /tmp/tmpdoc1dv_l/MedNIST.tar.gz\n",
      "2025-01-28 10:45:16,933 - INFO - Verified 'MedNIST.tar.gz', md5: 0bc7306e7427e00ad1c5526a6677552d.\n",
      "2025-01-28 10:45:16,934 - INFO - Writing into directory: /tmp/tmpdoc1dv_l.\n",
      "2025-01-28 10:45:37,688 - INFO - Verified 'MedNIST.tar.gz', md5: 0bc7306e7427e00ad1c5526a6677552d.\n",
      "2025-01-28 10:45:37,688 - INFO - File exists: /tmp/tmpdoc1dv_l/MedNIST.tar.gz, skipped downloading.\n",
      "2025-01-28 10:45:37,688 - INFO - Non-empty folder exists in /tmp/tmpdoc1dv_l/MedNIST, skipped extracting.\n",
      "`torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.\n",
      "2025-01-28 10:45:39,645 - ignite.engine.engine.SupervisedTrainer - INFO - Engine run resuming from iteration 0, epoch 0 until 75 epochs\n",
      "`torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
      "2025-01-28 10:46:38,033 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.1607925146818161\n",
      "2025-01-28 10:46:38,034 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[1] Complete. Time taken: 00:00:58.388\n",
      "2025-01-28 10:47:29,911 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.016663629561662674\n",
      "2025-01-28 10:47:29,911 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[2] Complete. Time taken: 00:00:51.877\n",
      "2025-01-28 10:48:30,636 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.01578485034406185\n",
      "2025-01-28 10:48:30,637 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[3] Complete. Time taken: 00:01:00.725\n",
      "2025-01-28 10:49:23,157 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.013587715104222298\n",
      "2025-01-28 10:49:23,157 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[4] Complete. Time taken: 00:00:52.521\n",
      "2025-01-28 10:50:14,409 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.012479547411203384\n",
      "2025-01-28 10:50:14,410 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 4 until 5 epochs\n",
      "`torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
      "2025-01-28 10:50:17,861 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.05754538252949715\n",
      "2025-01-28 10:50:17,862 - INFO - Epoch[5] Metrics -- val_mean_abs_error: 0.0575 \n",
      "2025-01-28 10:50:17,862 - INFO - Key metric: val_mean_abs_error best value: 0.05754538252949715 at epoch: 5\n",
      "2025-01-28 10:50:17,862 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[5] Complete. Time taken: 00:00:03.373\n",
      "2025-01-28 10:50:17,862 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.452\n",
      "2025-01-28 10:50:17,933 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 5\n",
      "2025-01-28 10:50:17,933 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[5] Complete. Time taken: 00:00:54.775\n",
      "2025-01-28 10:51:11,088 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.012240087613463402\n",
      "2025-01-28 10:51:11,088 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[6] Complete. Time taken: 00:00:53.155\n",
      "2025-01-28 10:52:04,514 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[7] Complete. Time taken: 00:00:53.427\n",
      "2025-01-28 10:52:57,317 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[8] Complete. Time taken: 00:00:52.803\n",
      "2025-01-28 10:53:49,711 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.01170545443892479\n",
      "2025-01-28 10:53:49,712 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[9] Complete. Time taken: 00:00:52.395\n",
      "2025-01-28 10:54:51,839 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 9 until 10 epochs\n",
      "2025-01-28 10:54:55,220 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.052069272845983505\n",
      "2025-01-28 10:54:55,220 - INFO - Epoch[10] Metrics -- val_mean_abs_error: 0.0521 \n",
      "2025-01-28 10:54:55,220 - INFO - Key metric: val_mean_abs_error best value: 0.052069272845983505 at epoch: 10\n",
      "2025-01-28 10:54:55,220 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[10] Complete. Time taken: 00:00:03.381\n",
      "2025-01-28 10:54:55,220 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.381\n",
      "2025-01-28 10:54:55,292 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 10\n",
      "2025-01-28 10:54:55,292 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[10] Complete. Time taken: 00:01:05.580\n",
      "2025-01-28 10:55:49,249 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.011470048688352108\n",
      "2025-01-28 10:55:49,249 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[11] Complete. Time taken: 00:00:53.957\n",
      "2025-01-28 10:56:41,933 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.010766257531940937\n",
      "2025-01-28 10:56:41,933 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[12] Complete. Time taken: 00:00:52.684\n",
      "2025-01-28 10:57:32,681 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[13] Complete. Time taken: 00:00:50.748\n",
      "2025-01-28 10:58:22,006 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.010334153659641743\n",
      "2025-01-28 10:58:22,007 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[14] Complete. Time taken: 00:00:49.326\n",
      "2025-01-28 10:59:12,718 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 14 until 15 epochs\n",
      "2025-01-28 10:59:15,903 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.04713250324130058\n",
      "2025-01-28 10:59:15,903 - INFO - Epoch[15] Metrics -- val_mean_abs_error: 0.0471 \n",
      "2025-01-28 10:59:15,903 - INFO - Key metric: val_mean_abs_error best value: 0.04713250324130058 at epoch: 15\n",
      "2025-01-28 10:59:15,903 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[15] Complete. Time taken: 00:00:03.184\n",
      "2025-01-28 10:59:15,903 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.185\n",
      "2025-01-28 10:59:15,972 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 15\n",
      "2025-01-28 10:59:15,972 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[15] Complete. Time taken: 00:00:53.966\n",
      "2025-01-28 11:00:05,379 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.010036583058536053\n",
      "2025-01-28 11:00:05,379 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[16] Complete. Time taken: 00:00:49.407\n",
      "2025-01-28 11:00:54,954 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[17] Complete. Time taken: 00:00:49.575\n",
      "2025-01-28 11:01:44,481 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[18] Complete. Time taken: 00:00:49.527\n",
      "2025-01-28 11:02:34,070 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.010024736635386944\n",
      "2025-01-28 11:02:34,070 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[19] Complete. Time taken: 00:00:49.590\n",
      "2025-01-28 11:03:24,598 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 19 until 20 epochs\n",
      "2025-01-28 11:03:28,013 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.04626006633043289\n",
      "2025-01-28 11:03:28,013 - INFO - Epoch[20] Metrics -- val_mean_abs_error: 0.0463 \n",
      "2025-01-28 11:03:28,013 - INFO - Key metric: val_mean_abs_error best value: 0.04626006633043289 at epoch: 20\n",
      "2025-01-28 11:03:28,013 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[20] Complete. Time taken: 00:00:03.414\n",
      "2025-01-28 11:03:28,014 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.415\n",
      "2025-01-28 11:03:28,373 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 20\n",
      "2025-01-28 11:03:28,373 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[20] Complete. Time taken: 00:00:54.303\n",
      "2025-01-28 11:04:21,035 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[21] Complete. Time taken: 00:00:52.662\n",
      "2025-01-28 11:05:11,684 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.010010532103478909\n",
      "2025-01-28 11:05:11,684 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[22] Complete. Time taken: 00:00:50.648\n",
      "2025-01-28 11:06:00,999 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.0098584508523345\n",
      "2025-01-28 11:06:01,000 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[23] Complete. Time taken: 00:00:49.316\n",
      "2025-01-28 11:06:54,731 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[24] Complete. Time taken: 00:00:53.732\n",
      "2025-01-28 11:07:49,033 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 24 until 25 epochs\n",
      "2025-01-28 11:07:52,450 - INFO - Epoch[25] Metrics -- val_mean_abs_error: 0.0496 \n",
      "2025-01-28 11:07:52,450 - INFO - Key metric: val_mean_abs_error best value: 0.04626006633043289 at epoch: 20\n",
      "2025-01-28 11:07:52,450 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[25] Complete. Time taken: 00:00:03.416\n",
      "2025-01-28 11:07:52,450 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.417\n",
      "2025-01-28 11:07:52,809 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 25\n",
      "2025-01-28 11:07:52,809 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[25] Complete. Time taken: 00:00:58.078\n",
      "2025-01-28 11:08:47,931 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.00983799621462822\n",
      "2025-01-28 11:08:47,931 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[26] Complete. Time taken: 00:00:55.122\n",
      "2025-01-28 11:09:40,163 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.009661602787673473\n",
      "2025-01-28 11:09:40,163 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[27] Complete. Time taken: 00:00:52.232\n",
      "2025-01-28 11:10:32,018 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[28] Complete. Time taken: 00:00:51.855\n",
      "2025-01-28 11:11:26,697 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[29] Complete. Time taken: 00:00:54.679\n",
      "2025-01-28 11:12:19,319 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 29 until 30 epochs\n",
      "2025-01-28 11:12:22,592 - INFO - Epoch[30] Metrics -- val_mean_abs_error: 0.0470 \n",
      "2025-01-28 11:12:22,592 - INFO - Key metric: val_mean_abs_error best value: 0.04626006633043289 at epoch: 20\n",
      "2025-01-28 11:12:22,592 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[30] Complete. Time taken: 00:00:03.272\n",
      "2025-01-28 11:12:22,592 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.273\n",
      "2025-01-28 11:12:22,649 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 30\n",
      "2025-01-28 11:12:22,649 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[30] Complete. Time taken: 00:00:55.952\n",
      "2025-01-28 11:13:16,180 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.00965067371726036\n",
      "2025-01-28 11:13:16,180 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[31] Complete. Time taken: 00:00:53.531\n",
      "2025-01-28 11:14:10,456 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.009442757815122604\n",
      "2025-01-28 11:14:10,456 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[32] Complete. Time taken: 00:00:54.275\n",
      "2025-01-28 11:15:03,456 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.008967726491391659\n",
      "2025-01-28 11:15:03,456 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[33] Complete. Time taken: 00:00:53.000\n",
      "2025-01-28 11:15:55,835 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[34] Complete. Time taken: 00:00:52.379\n",
      "2025-01-28 11:16:47,540 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 34 until 35 epochs\n",
      "2025-01-28 11:16:50,823 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.04337985813617706\n",
      "2025-01-28 11:16:50,823 - INFO - Epoch[35] Metrics -- val_mean_abs_error: 0.0434 \n",
      "2025-01-28 11:16:50,823 - INFO - Key metric: val_mean_abs_error best value: 0.04337985813617706 at epoch: 35\n",
      "2025-01-28 11:16:50,823 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[35] Complete. Time taken: 00:00:03.282\n",
      "2025-01-28 11:16:50,823 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.283\n",
      "2025-01-28 11:16:50,894 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 35\n",
      "2025-01-28 11:16:50,894 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[35] Complete. Time taken: 00:00:55.060\n",
      "2025-01-28 11:17:42,195 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[36] Complete. Time taken: 00:00:51.301\n",
      "2025-01-28 11:18:34,921 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[37] Complete. Time taken: 00:00:52.726\n",
      "2025-01-28 11:19:27,769 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[38] Complete. Time taken: 00:00:52.848\n",
      "2025-01-28 11:20:20,623 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[39] Complete. Time taken: 00:00:52.854\n",
      "2025-01-28 11:21:11,887 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 39 until 40 epochs\n",
      "2025-01-28 11:21:14,992 - INFO - Epoch[40] Metrics -- val_mean_abs_error: 0.0438 \n",
      "2025-01-28 11:21:14,992 - INFO - Key metric: val_mean_abs_error best value: 0.04337985813617706 at epoch: 35\n",
      "2025-01-28 11:21:14,992 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[40] Complete. Time taken: 00:00:03.104\n",
      "2025-01-28 11:21:14,992 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.105\n",
      "2025-01-28 11:21:15,062 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 40\n",
      "2025-01-28 11:21:15,062 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[40] Complete. Time taken: 00:00:54.439\n",
      "2025-01-28 11:22:06,367 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[41] Complete. Time taken: 00:00:51.305\n",
      "2025-01-28 11:22:57,686 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[42] Complete. Time taken: 00:00:51.319\n",
      "2025-01-28 11:23:49,550 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[43] Complete. Time taken: 00:00:51.864\n",
      "2025-01-28 11:24:40,625 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[44] Complete. Time taken: 00:00:51.074\n",
      "2025-01-28 11:25:31,099 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 44 until 45 epochs\n",
      "2025-01-28 11:25:34,234 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.04306837171316147\n",
      "2025-01-28 11:25:34,234 - INFO - Epoch[45] Metrics -- val_mean_abs_error: 0.0431 \n",
      "2025-01-28 11:25:34,234 - INFO - Key metric: val_mean_abs_error best value: 0.04306837171316147 at epoch: 45\n",
      "2025-01-28 11:25:34,234 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[45] Complete. Time taken: 00:00:03.135\n",
      "2025-01-28 11:25:34,235 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.135\n",
      "2025-01-28 11:25:34,584 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 45\n",
      "2025-01-28 11:25:34,585 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[45] Complete. Time taken: 00:00:53.960\n",
      "2025-01-28 11:26:24,509 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[46] Complete. Time taken: 00:00:49.924\n",
      "2025-01-28 11:27:13,455 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[47] Complete. Time taken: 00:00:48.945\n",
      "2025-01-28 11:28:03,014 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[48] Complete. Time taken: 00:00:49.559\n",
      "2025-01-28 11:28:52,035 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[49] Complete. Time taken: 00:00:49.021\n",
      "2025-01-28 11:29:41,226 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 49 until 50 epochs\n",
      "2025-01-28 11:29:44,269 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.0430283285677433\n",
      "2025-01-28 11:29:44,269 - INFO - Epoch[50] Metrics -- val_mean_abs_error: 0.0430 \n",
      "2025-01-28 11:29:44,269 - INFO - Key metric: val_mean_abs_error best value: 0.0430283285677433 at epoch: 50\n",
      "2025-01-28 11:29:44,269 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[50] Complete. Time taken: 00:00:03.042\n",
      "2025-01-28 11:29:44,269 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.043\n",
      "2025-01-28 11:29:44,628 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 50\n",
      "2025-01-28 11:29:44,628 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[50] Complete. Time taken: 00:00:52.594\n",
      "2025-01-28 11:30:34,707 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[51] Complete. Time taken: 00:00:50.079\n",
      "2025-01-28 11:31:25,426 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.008929001167416573\n",
      "2025-01-28 11:31:25,426 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[52] Complete. Time taken: 00:00:50.719\n",
      "2025-01-28 11:32:17,793 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.008782487362623215\n",
      "2025-01-28 11:32:17,794 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[53] Complete. Time taken: 00:00:52.368\n",
      "2025-01-28 11:33:09,429 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.008487475104629993\n",
      "2025-01-28 11:33:09,429 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[54] Complete. Time taken: 00:00:51.636\n",
      "2025-01-28 11:34:00,926 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 54 until 55 epochs\n",
      "2025-01-28 11:34:04,209 - INFO - Epoch[55] Metrics -- val_mean_abs_error: 0.0439 \n",
      "2025-01-28 11:34:04,209 - INFO - Key metric: val_mean_abs_error best value: 0.0430283285677433 at epoch: 50\n",
      "2025-01-28 11:34:04,209 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[55] Complete. Time taken: 00:00:03.283\n",
      "2025-01-28 11:34:04,209 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.283\n",
      "2025-01-28 11:34:04,277 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 55\n",
      "2025-01-28 11:34:04,277 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[55] Complete. Time taken: 00:00:54.848\n",
      "2025-01-28 11:34:55,848 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[56] Complete. Time taken: 00:00:51.571\n",
      "2025-01-28 11:35:47,270 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[57] Complete. Time taken: 00:00:51.422\n",
      "2025-01-28 11:36:37,430 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[58] Complete. Time taken: 00:00:50.160\n",
      "2025-01-28 11:37:27,691 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[59] Complete. Time taken: 00:00:50.261\n",
      "2025-01-28 11:38:19,228 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 59 until 60 epochs\n",
      "2025-01-28 11:38:22,427 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.041947875171899796\n",
      "2025-01-28 11:38:22,427 - INFO - Epoch[60] Metrics -- val_mean_abs_error: 0.0419 \n",
      "2025-01-28 11:38:22,427 - INFO - Key metric: val_mean_abs_error best value: 0.041947875171899796 at epoch: 60\n",
      "2025-01-28 11:38:22,427 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[60] Complete. Time taken: 00:00:03.198\n",
      "2025-01-28 11:38:22,427 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.198\n",
      "2025-01-28 11:38:22,785 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 60\n",
      "2025-01-28 11:38:22,785 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[60] Complete. Time taken: 00:00:55.094\n",
      "2025-01-28 11:39:14,371 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[61] Complete. Time taken: 00:00:51.586\n",
      "2025-01-28 11:40:06,623 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[62] Complete. Time taken: 00:00:52.252\n",
      "2025-01-28 11:40:58,129 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[63] Complete. Time taken: 00:00:51.506\n",
      "2025-01-28 11:41:47,897 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[64] Complete. Time taken: 00:00:49.768\n",
      "2025-01-28 11:42:39,507 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 64 until 65 epochs\n",
      "2025-01-28 11:42:42,800 - ignite.engine.engine.SupervisedEvaluator - INFO - Got new best metric of val_mean_abs_error: 0.03936021775007248\n",
      "2025-01-28 11:42:42,800 - INFO - Epoch[65] Metrics -- val_mean_abs_error: 0.0394 \n",
      "2025-01-28 11:42:42,800 - INFO - Key metric: val_mean_abs_error best value: 0.03936021775007248 at epoch: 65\n",
      "2025-01-28 11:42:42,800 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[65] Complete. Time taken: 00:00:03.292\n",
      "2025-01-28 11:42:42,800 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.293\n",
      "2025-01-28 11:42:42,907 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 65\n",
      "2025-01-28 11:42:42,907 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[65] Complete. Time taken: 00:00:55.010\n",
      "2025-01-28 11:43:34,027 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[66] Complete. Time taken: 00:00:51.120\n",
      "2025-01-28 11:44:23,357 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[67] Complete. Time taken: 00:00:49.330\n",
      "2025-01-28 11:45:15,222 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[68] Complete. Time taken: 00:00:51.865\n",
      "2025-01-28 11:46:05,380 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[69] Complete. Time taken: 00:00:50.158\n",
      "2025-01-28 11:46:54,867 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 69 until 70 epochs\n",
      "2025-01-28 11:46:58,033 - INFO - Epoch[70] Metrics -- val_mean_abs_error: 0.0419 \n",
      "2025-01-28 11:46:58,033 - INFO - Key metric: val_mean_abs_error best value: 0.03936021775007248 at epoch: 65\n",
      "2025-01-28 11:46:58,033 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[70] Complete. Time taken: 00:00:03.165\n",
      "2025-01-28 11:46:58,033 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.166\n",
      "2025-01-28 11:46:58,103 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 70\n",
      "2025-01-28 11:46:58,104 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[70] Complete. Time taken: 00:00:52.723\n",
      "2025-01-28 11:47:48,003 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[71] Complete. Time taken: 00:00:49.899\n",
      "2025-01-28 11:48:39,114 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[72] Complete. Time taken: 00:00:51.111\n",
      "2025-01-28 11:49:28,678 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[73] Complete. Time taken: 00:00:49.564\n",
      "2025-01-28 11:50:20,176 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[74] Complete. Time taken: 00:00:51.498\n",
      "2025-01-28 11:51:10,599 - ignite.engine.engine.SupervisedTrainer - INFO - Got new best metric of train_acc: 0.008344327099621296\n",
      "2025-01-28 11:51:10,599 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 74 until 75 epochs\n",
      "2025-01-28 11:51:13,917 - INFO - Epoch[75] Metrics -- val_mean_abs_error: 0.0419 \n",
      "2025-01-28 11:51:13,918 - INFO - Key metric: val_mean_abs_error best value: 0.03936021775007248 at epoch: 65\n",
      "2025-01-28 11:51:13,918 - ignite.engine.engine.SupervisedEvaluator - INFO - Epoch[75] Complete. Time taken: 00:00:03.318\n",
      "2025-01-28 11:51:13,918 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run complete. Time taken: 00:00:03.319\n",
      "2025-01-28 11:51:13,990 - ignite.engine.engine.SupervisedTrainer - INFO - Saved checkpoint at epoch: 75\n",
      "2025-01-28 11:51:13,990 - ignite.engine.engine.SupervisedTrainer - INFO - Epoch[75] Complete. Time taken: 00:00:53.813\n",
      "2025-01-28 11:51:14,103 - ignite.engine.engine.SupervisedTrainer - INFO - Train completed, saved final checkpoint: outputs/model_final_iteration=75000.pt\n",
      "2025-01-28 11:51:14,103 - ignite.engine.engine.SupervisedTrainer - INFO - Engine run complete. Time taken: 01:05:34.457\n"
     ]
    }
   ],
   "source": [
    "# multiple config files need to be specified this way with '' quotes, variable used in command line must be in \"\" quotes\n",
    "configs=f\"{bundle_root}/configs/train.yaml\"\n",
    "!PYTHONPATH={bundle_root} python -m monai.bundle run training \\\n",
    "    --meta_file {bundle_root}/configs/metadata.json \\\n",
    "    --config_file \"{configs}\" \\\n",
    "    --logging_file {bundle_root}/configs/logging.conf \\\n",
    "    --bundle_root {bundle_root} \\\n",
    "    --dataset_dir {dataset_dir} \\\n",
    "    --output_dir './outputs'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f872fccf-12af-43ef-bdb5-f49bc74119fa",
   "metadata": {},
   "source": [
    "### Test the diffusion model"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5030732c-deb5-448a-b575-385bda0fa308",
   "metadata": {},
   "source": [
    "The test inference script can then be invoked as such to produce an output tensor saved to the given file with a randomly generated image. The `ckpt_path` value should point to the final checkpoint file created during the above training run which will be in a subdirectory of `./results`. The training script's default behaviour is to create a new timestamped subdirectory in `./results` for every new run, this can be explicitly set by providing a `output_dir` value on the command line."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "40e6a3e9-3984-44b0-ba9a-5b8d58c7ea2d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2025-01-28 11:52:00,179 - INFO - --- input summary of monai.bundle.scripts.run ---\n",
      "2025-01-28 11:52:00,179 - INFO - > config_file: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/inference.yaml'\n",
      "2025-01-28 11:52:00,179 - INFO - > meta_file: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/metadata.json'\n",
      "2025-01-28 11:52:00,179 - INFO - > run_id: 'testing'\n",
      "2025-01-28 11:52:00,179 - INFO - > ckpt_path: './outputs/model_final_iteration=75000.pt'\n",
      "2025-01-28 11:52:00,179 - INFO - > bundle_root: '/data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm'\n",
      "2025-01-28 11:52:00,179 - INFO - > out_file: 'test.pt'\n",
      "2025-01-28 11:52:00,179 - INFO - ---\n",
      "\n",
      "\n",
      "2025-01-28 11:52:00,179 - INFO - Setting logging properties based on config: /data/PycharmProjects/monai-model-zoo/model-zoo/models/mednist_ddpm/configs/logging.conf.\n",
      "Detected deprecated name 'optional_packages_version' in configuration file, replacing with 'required_packages_version'.\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:08<00:00, 113.53it/s]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f5db4c46050>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGfCAYAAAAZGgYhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP75JREFUeJzt3X1wlfWZP/53eEjCY4AACRECYUXBBxABMV+sazGWZbuOrkxXu3SW7Tp1dIEKuNNKt2rrVOPqbKW2EdRl0c7WZsvOYKs74jqx4qqAEHVRUQRMJRiS8JQHAiaR3L8/HM7PcF9vzAUnfk4O79dMZvTK7X3up3M+3ud+5/pkRFEUQURE5CvWK/QGiIjI2UkDkIiIBKEBSEREgtAAJCIiQWgAEhGRIDQAiYhIEBqAREQkCA1AIiIShAYgEREJQgOQiIgE0ae7VlxWVoaHHnoItbW1mDJlCn75y1/isssu+9L/rqOjAzU1NRg0aBAyMjK6a/NERKSbRFGE5uZmFBQUoFevU9znRN2gvLw8yszMjP793/89eu+996Lvfe970ZAhQ6K6urov/W+rq6sjAPrRj370o58e/lNdXX3Kz/uMKEp+M9KZM2dixowZ+NWvfgXg87uaMWPGYPHixbjzzjtP+d82NjZiyJAhqKqqwuDBgzv9rnfv3l3ehqamJrN+/Phxs97a2mrWjx07Fqu1t7eby7a0tJj1Tz/9tMvrZutnr8n2h51Wa3m2bEdHh1lPBrbd7Jh4jhVgn092Hti1cvToUbNuHRf2f3nJuou31pOZmWkuy84nq1vHMCsry7WO/v37m/UhQ4aY9ZPf2wDfH/a+Z8fcurbYsp999plZ91xXgH19svcPO4ZsGz2fe95j5Tku7D1oraO1tRUrVqxAQ0MDcnJy2OYm/yu4trY2VFZWYvny5Z02sKSkBBs3bjQ39Isntbm5GcDnF+iZDEAM++BjH059+sQPUVtbm7ks+7DxXhTW+kMMQGzdyeBdN9tGdmytc8HWwT742IdTug1AyVg3G7Cys7O7XGfrCDEAWe97gJ9P67h435tsP1NlAGID6qm+Yvuy6z/pIYQDBw7g+PHjyMvL61TPy8tDbW1tbPnS0lLk5OQkfsaMGZPsTRIRkRQUPAW3fPlyNDY2Jn6qq6tDb5KIiHwFkv4V3PDhw9G7d2/U1dV1qtfV1SE/Pz+2fFZWlnnr3adPH3obfLKdO3fGatbXfQBw6NAhs37kyBGzvn///ljtxNeEJ2PPgNhXduxrNev2l333zNbNvlqwlmfLsq8l2XazW3Rr/cn6eo995WBdO+xrpb59+5p19vWR9ZWD9/t79nUTW4/1/TvbPu9XP9a62fuEPRdjz9HY9dmdzxc92HlgXx3169fPrFvPwNiy7Lx19fPuBOv9ya5xdl15vjpl7xPremOfKbHt6tJSDpmZmZg2bRoqKioStY6ODlRUVKC4uDjZLyciIj1Ut/wd0LJly7BgwQJMnz4dl112GVasWIGWlhZ897vf7Y6XExGRHqhbBqAbb7wR+/fvx913343a2lpccsklWL9+fSyYICIiZ69u64SwaNEiLFq0qLtWLyIiPVzwFJyIiJyduu0OqDuwpNoHH3wQq23atMlcdtu2bWb94MGDXX5N719Ps7qnCQVLDXnr3ZlIE+lpWLqUYcnQw4cPJ2NzUtrYsWPN+jnnnBOrBUvBiYiIdIUGIBERCUIDkIiIBKEBSEREgkjZEEJHR0fsQTp7WG7VWetwTysNwNcew9vSxtO1mO07e03P8p6WQKezLSLSs1hTKLAWQlY7n6528NYdkIiIBKEBSEREgtAAJCIiQWgAEhGRIDQAiYhIECmbgsvIyPjS+cRPsCZh8kzIBvAJmzyJNLZutjxrl2O9JtufZNS9aTe17hFJD54J6Rgr8dbVNmO6AxIRkSA0AImISBAagEREJAgNQCIiEoQGIBERCaJHpeBYHzerXxtLYXgncLMSX97UGMO20VqPJzEHgCYIrWPFEoDJmgTPkyRk6xA5W/Xt29esWwk29l5mvdm8733L0aNHYzVNSCciIilNA5CIiAShAUhERILQACQiIkFoABIRkSBSNgVnaW1tNeusB5vF2zutqz2NAJ4886yDrYetm6VYGCvd4l03W54lbaz9Z8keL8+sst25Du+5Z9ebUoDdg13LbMZjdi2z69Zav/f9472GkvGanrQwW4fVi7Orn0u6AxIRkSA0AImISBAagEREJAgNQCIiEkSPCiGw9i3WAy/PA3HA14rH24qG8T6MTAZrG5PxEP5UPPvjbS2UjGPFHpiyuvUgmj3MZnWmqy1MAL7v3uvQc569IR62jVagiC3L3veeY8vCA+xzgu0PW97adu/7yhsg8LTVYq/Z3t5u1i2e7evq+1J3QCIiEoQGIBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCu748eOx9AtruWOlZFhig6U+PMkh7+RwyZhMjiV+WELIk/ph6/CmeDx1bxKoO9vleFkJKXYMWfsob/sjaz+T0YYJsLfde6w8703Guz+edkbHjh0zl+3fv79Z9yTPGE9iDvCnTq39915XbH/OJNnmoTsgEREJQgOQiIgEoQFIRESC0AAkIiJBaAASEZEgUjYF17t3b5oiOZmV+PKmWDz9wLxJLZY+Yikez/4kq1+bZ90s2eTZxu7cbsCXamTXGVuHtZ9dvVa/bN3W5F6M9xiybczKyorVWFqUnfvBgweb9ebmZrNuXfssMehlvT/ZcWX7yY4VS/tZ6/dcP0ByEqDenome/m7ea7wrdAckIiJBaAASEZEgNACJiEgQGoBERCQIDUAiIhKEOwX3yiuv4KGHHkJlZSX27duHdevW4frrr0/8Pooi3HPPPXjiiSfQ0NCAWbNmYeXKlZgwYcIZb6wnyeHt+eZJeCRrRlTPbIze2SIZKznj7VXnWTdgb7s3GZgM3iSh53rzXlfe3lzW+tlrZmdnm3XPfrLUGHtNlg4rKCgw64cPH47VPv30U3PZo0ePmnXG2k92XFtaWsx6Tk6OWbcSg4B93Xpm1AWSM6NysmY39vSCO5OUq/sOqKWlBVOmTEFZWZn5+wcffBCPPPIIVq1ahc2bN2PAgAGYM2cOvbhEROTs5L4Dmjt3LubOnWv+LooirFixAj/+8Y9x3XXXAQB+/etfIy8vD8888wxuuumm2H/T2traKf/f1NTk3SQREemBkvoMqKqqCrW1tSgpKUnUcnJyMHPmTGzcuNH8b0pLS5GTk5P4GTNmTDI3SUREUlRSB6Da2loAQF5eXqd6Xl5e4ncnW758ORobGxM/1dXVydwkERFJUcFb8WRlZdEHeyIikr6SOgDl5+cDAOrq6jBq1KhEva6uDpdccolrXe3t7bEkG0uJWKkST283wJd4YskmlkjzpluSMctnMtJk3qQa227PtrD98fahSsaMjuw1PakflnhiKTOWJrNCPGwdBw8eNOuMlRhNVmiIpcmGDBkSq7H03vTp0836//3f/5n1xsbGWI29N098Zp1s//79Zp2dnwEDBsRq7Pyw94P3+rSW984qy65Paz0pPyNqUVER8vPzUVFRkag1NTVh8+bNKC4uTuZLiYhID+e+Azpy5Ah27dqV+Peqqiq8/fbbGDZsGAoLC7FkyRL87Gc/w4QJE1BUVIS77roLBQUFnf5WSERExD0Abd26FV//+tcT/75s2TIAwIIFC/Dkk0/iBz/4AVpaWnDLLbegoaEBV1xxBdavX09vr0VE5OzkHoCuuuqqUz6jyMjIwL333ot77733jDZMRETSW/AUXDJ05wOzZAQCvO0xPK/JlvVMqOUNT3hb93hao3TnMWQPXL0T0lnHi233oEGDzPrevXvNOtsf60E8Wzfbn6FDh5p1a3/Yw/m/+Iu/MOv19fVm/b777jPrn3zySazGAgtFRUVm/bLLLjPrr7/+eqz2xhtvmMsykyZNMuuHDh0y61bwg03S521zxN4rns8Jdk2wdXt8pa14REREkkEDkIiIBKEBSEREgtAAJCIiQWgAEhGRIFI2BZeRkRFLFrGkkacVD0t9eNrFeCd3YtuSjNdkE+952sgwbPu8rYWs5VlLE8bbL9BKdrG0nzcFx1JMli9ONfJFbP9LS0vN+uLFi2M19n7Ytm2bWa+rqzPrU6dOjdVGjx5tLsu62q9atcqsW21xAKC5uTlWY++Tffv2mfW/+qu/MuvW/rC2Peeff75ZZ4k8lvazEm/sHLPrzZuO86R/Wd2TgvO0MetqCll3QCIiEoQGIBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCu6zzz6LpbA8qSzW98vb38xKTnlTYMnotebtbccmFLOSLJ6UDeBPsFmTj7H03tGjR13bws6ztf/ec89Y57Nfv37msmxyuNzcXLP+yiuvmHUr2fa3f/u35rJXXXWVWT/33HPN+rBhw2K1PXv2mMt+caLJL2L7s2TJErNu9YL77W9/ay574MABs86ucWt/WKrv3XffNesXX3yxWW9oaDDrVmqOJTfZtcw+J7yTaCaDlY7zTnbXFboDEhGRIDQAiYhIEBqAREQkCA1AIiIShAYgEREJImVTcBZPWoklSroTS3YlY+ZTtj/e/bSSM2w7WB8zLyt95ZlZEuA9xY4dO2bWrf1kiTl2DLOzs826dVys3mYAnxVz7NixZp31LNu/f3+sxvbnL//yL80666lmpcYKCwvNZRm2Lbt37zbrd9xxR6zGzvFTTz1l1h977DGzbiUS2XvzrrvuMussebdlyxazfuTIkVitf//+5rKsFxzDesR152eclXjzzLLc1T6XugMSEZEgNACJiEgQGoBERCQIDUAiIhJEyoYQrFY8LIRgPUT3trXwBALYwzjvxGaecAJblrXjYNtitS9JxjEB+IPrP/uzP4vVrAffADBixAizziZTsx7OA0BLS0usxloIsZYp1joA+3ixib3YeaisrDTr11xzjVm3/OlPfzLrbD89LZSsh+oA8Nprr5l1FiqZMGGCWZ8/f36stm7dOnNZdmxXr15t1pcuXRqrVVdXm8uyUAHDrgkrKOBtXcP2MxlhA2/wwcI+a6zrqqvbrDsgEREJQgOQiIgEoQFIRESC0AAkIiJBaAASEZEgUjYFZ2GpLCtlxlpBsCSHZ3In7zq8E54lo+UQaz1iLe/dH3YePMnDc845x1x23LhxrnU3NTWZdSsd9/bbb5vLsknGPFjbHpY8Y8uzVjzWhG/WRH8A8Prrr5t1dsx37doVq7FjtWHDBrPOtoVN1HfjjTfGaj/60Y/MZW+66SazXlFRYdatyeFYO5tXX33VrF955ZVmnbXXsRJs7JplqUtv6tRKtnVnex5PslYpOBERSWkagEREJAgNQCIiEoQGIBERCUIDkIiIBJGyKbjjx4/HkhSeHmwsheGdHM5KcHl7uzGe9BnbH7YtrG4dq2RNPMf6sr355pux2nnnnWcuO3DgQLNeUFBg1ocPH97lOrt+PvzwQ7POJsc7evRorMbO5aBBg8w6m5COqa2tjdVY8oxNAsd6k1l99l566SVz2YkTJ5p1lupjPfysXnP19fXmss8995xZv/jii836mjVrYrUZM2aYy7KUIktGsvOZjF5r3nVYnzdsHWzCQHZNWNezJyncVboDEhGRIDQAiYhIEBqAREQkCA1AIiIShAYgEREJImVTcBkZGV1OXXjSZywd5kl4eGcnZUkTT7+2ZM3w6pkV04tto5Um27Fjh7ksS7uxdV944YVm3eqdxpJArE8YS/UdOHAgVmOzk7KehCy9x2YQtXqQsdTYqlWrzDq79q1riF1XH330kVln6atkzPrLZi1lickBAwbEau+++665LGNdPwAwdOhQs26l/dj1xmY+ZdeK5z3unSHZg+2P51yeTHdAIiIShAYgEREJQgOQiIgEoQFIRESCcA1ApaWlmDFjBgYNGoSRI0fi+uuvjz1M/vTTT7Fw4ULk5uZi4MCBmDdvHm3HISIiZy9XCm7Dhg1YuHAhZsyYgc8++ww/+tGP8I1vfAPbt29PJE+WLl2K//7v/8batWuRk5ODRYsW4YYbbsBrr73m2rDPPvuMpsRO5u3B5uHpicTSKizd4pm1lR0LlkxhaR2r7xvbjmPHjpl1hiXVrNTYoUOHzGXZ/6xYs1yeavnx48fHaqz/2uWXX27Wq6qqzLq1P6wv27Zt28w6S2VVV1ebdWvWSe/MmiwBaV23LBnIrhX2mizxZSXV2LJs3WwbrVlYu/pZcgLrBcf239ofb+I0GZ9j3t6Q7DPLei+z7bOObVdnRHUNQOvXr+/0708++SRGjhyJyspKXHnllWhsbMTq1avx9NNPY/bs2QA+bww4adIkbNq0ib7RRUTk7HNGz4AaGxsBAMOGDQMAVFZWor29HSUlJYllJk6ciMLCQmzcuNFcR2trK5qamjr9iIhI+jvtAaijowNLlizBrFmzcNFFFwH4vGV8ZmZm7OuIvLw8s5088PlzpZycnMTPmDFjTneTRESkBzntAWjhwoV49913UV5efkYbsHz5cjQ2NiZ+2HfgIiKSXk6rFc+iRYvw3HPP4ZVXXsHo0aMT9fz8fLS1taGhoaHTXVBdXR3y8/PNdWVlZZkPU60J6TxtPdgDWvYwjrHW7Q0VeB8MWthDvVGjRpn1Cy64wKxbx8WaYA3gD/j37t1r1lmwwML2/cTXumdatx7asyDD1KlTzXpeXp5Zt+7mzznnHHNZ1i6GHStWtwIhyfq62gq9eAMoLBDArq1kbDsLLVjXOHufsHWw0AKrW58TbN2eiSjZuhm2DvbZxFite7xBjq5w3QFFUYRFixZh3bp1eOmll1BUVNTp99OmTUPfvn1RUVGRqO3YsQN79uxBcXFxcrZYRETSgusOaOHChXj66afx+9//HoMGDUr8n2BOTg769euHnJwc3HzzzVi2bBmGDRuGwYMHY/HixSguLlYCTkREOnENQCtXrgQAXHXVVZ3qa9aswd///d8DAB5++GH06tUL8+bNQ2trK+bMmYNHH300KRsrIiLpwzUAdeW7yOzsbJSVlaGsrOy0N0pERNKfesGJiEgQKTshXRRFsTsulgSzEk8MS1+xthnW8uxOkG0fW55NEmWlTdiyI0eONOvnnXeeWbfSSqwdh9XSBLAnmAP4pGwffvhhrMaO95EjR8w6S02xFJz1mif+YPpkgwcPNuvjxo0z69ax/WIa9ItYGtFq5wP42v+wNOLOnTvNutWGCUhOCxh2DXkmMWNJOlbPzs7u4tbxzwiWlmU8STXvBHPeFl8e3snxPMfW+ozsasJXd0AiIhKEBiAREQlCA5CIiAShAUhERILQACQiIkGkbAquo6MjlqTwTFjFEiWnej2LlWTxTsrl7f1krZ8ty47Jxx9/bNYHDRoUqw0fPtxclk2yVlBQYNanTJli1q0EV319vbksmwiMJb7eeecds24l9d58801zWdavjDXGPffcc2O13Nxcc1nreAO+voYAMGLEiFht0qRJ5rKszpJ3+/bti9XYvre0tJh1ljJjCa7+/fvHaizpydKl7LxZqTm2Dlb3bovnPcsSacnYRm9ijn2WWefZc812NVmpOyAREQlCA5CIiAShAUhERILQACQiIkFoABIRkSBSNgVn8fQt8qTaTrW8dwZVC0umsOSQZzZC1n+NLW/1d2O93djsnGz2T5YEsxJcrM8c69c2fvx4s24l0gCgsrIyVrPSXgDvkbZ7926zbmHncsyYMWadJQytdBhg9yxjs5aePFHkCexatq4V1pPP6rEHABs3bjTr7Ppk67ewY8JSZta62XuQpRQZdgyt9bPritXZNnrScd6efJ6ELrtm1QtORER6HA1AIiIShAYgEREJQgOQiIgEoQFIRESCSNkUXK9evWKJDpaCs+rJSrVZqRLvulnyjs30aCVQWBKmrq7OrLO+XwMGDIjV2KyQbLZVNgtpTU2NWc/Ly4vVWAqOpXKsJB0AXHnllWZ99uzZsdqWLVvMZVnfPNbzzkq81dbWmsuynlgsSchmZ7X2n50Hdh2yPm5WnZ2Hq6++2qzPnDnTrLNefRUVFbHaJ598Yi7LUmPs/WNdz94UGJuB18Pbl40tP3ToULNupdIGDhxoLsvSfuw6tNKobB1WurStrQ2rV682l/8i3QGJiEgQGoBERCQIDUAiIhKEBiAREQkiZUMI7e3tsRYh7KGj9YDe23KH8Ux2xx4isgfRbEIta/3sASBrAcPatLAH1xY2aRwLPlhhAwAYNWpUrMba9rAHruzhKjuG48aN6/I6WHji8OHDZp21LrKw65AdW3Y+rXY07HizB+5s3dY2sokB9+/fb9bZBG5XXHGFWZ88eXKs9v7775vLspAIey9bARerXRfA35vsHDc3N5t16zOItZVi1z5bngVTrBACe/+wzw8WQLKOrWeST3atnUx3QCIiEoQGIBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCs7iSWGw9BFLqnna67DkDGuX49luwN5GliphyUC2jV1Np5wKS0Kx1Ji1PGutk5+fb9bZ+WRpJWsCO5YmYskmdt6sVF9bW5u5LEsjsuuNpRStCfZYqyQ2CV5hYaFZtxJ2bPKxnJwcs86uK9ZGxzoXrPURSymydlPWBHtsu9n1xj4nPO112LKsDRVL6nne4+x9wuoebLutVB+77k+mOyAREQlCA5CIiAShAUhERILQACQiIkFoABIRkSBSNgUXRVEs5cH6TVlpJW8vOJYa86yD8U40ZaWbWMKOHRNWt1JJLAXGElnepI2VVGM93KzJrQDgT3/6k1kfPny4WbdSY+eff7657LnnnmvW2XmzrjeWEGL92qyJAQFfbzLWk2/v3r1mffv27Wa9qKgoVmPH1TOJIsDTUEeOHInV2ISTrEcaOz9WCo71x2OJQdYjjfXIs65972eQN6lmXUOsz5yVdAR48s5KNbKkp3UdsuvkZLoDEhGRIDQAiYhIEBqAREQkCA1AIiIShAYgEREJokel4FjSxkqVeHq7nYqVPmPpG5Y8Y8kmlhSxkjlW/zGA9+BiKStrG9kxYb22WGrOSh+xOkvUWOmoUy1fW1tr1g8dOnTG67bSYYCdJGTrYOkjlspirG2ZOnWquWxTU5NZ37lzp1nfsWNHrMaOFesnx6591vPPWj9LmDGsj5uFJTpZwo6lw9h5tt5D7Nx76+xzz6qz68qT8mXrYSlFa6bhrvbM0x2QiIgEoQFIRESC0AAkIiJBaAASEZEgXCGElStXYuXKlYm2KBdeeCHuvvtuzJ07F8DnD8TvuOMOlJeXo7W1FXPmzMGjjz5K25GcSltbW+yBH3uQZj3wYm0t2AM9z7q9E8yx5dlkXdbDWHYM2YNB9jBy3LhxsRp7mMseCn/yySdmnT2Its4Fa0PEJrVjrXjY8lYLGNYuh7W0Ye2CrMnN2ENrNnkfO2+sBYx1bNk1ziaTu/zyy8269YDeCnGcqj5o0CCzziYBtFr9sGPC2vlYD78BO1jArln23mTXMnu4br2X2TXBAkLeieo8vCEEz0Sc1rnvlhDC6NGj8cADD6CyshJbt27F7Nmzcd111+G9994DACxduhTPPvss1q5diw0bNqCmpgY33HCD5yVEROQs4boDuvbaazv9+3333YeVK1di06ZNGD16NFavXo2nn34as2fPBgCsWbMGkyZNwqZNm+j/fYmIyNnptJ8BHT9+HOXl5WhpaUFxcTEqKyvR3t6OkpKSxDITJ05EYWEhNm7cSNfT2tqKpqamTj8iIpL+3APQO++8g4EDByIrKwu33nor1q1bhwsuuAC1tbXIzMyMff+cl5dH/1gQAEpLS5GTk5P4Ye3RRUQkvbgHoPPPPx9vv/02Nm/ejNtuuw0LFiyg84x0xfLly9HY2Jj4qa6uPu11iYhIz+FuxZOZmZmYwGvatGnYsmULfvGLX+DGG29EW1sbGhoaOt0F1dXVnbJlRlZWFk3+nJy6YG0wrASKt10Oa0djpWTYulmdTSbHWtfs3r27y8tak9cBPCFlpcnYvrNUEkuwsde0WoxMmjTJXJal91hbIDaBXU1NTazG2suwNFVLS4tZt84z2272lTJrZ+SZxIylqVj7m/Hjx5t16/3JWjx5k1osZWa9J9g62P6w94T1mlZyEeCfKWxCPpZGta4Vdl2xY8g+P1ga0zqG7LPGOzmedVzYNWF9prDk4snO+O+AOjo60NraimnTpqFv376oqKhI/G7Hjh3Ys2cPiouLz/RlREQkzbjugJYvX465c+eisLAQzc3NePrpp/Hyyy/jhRdeQE5ODm6++WYsW7YMw4YNw+DBg7F48WIUFxcrASciIjGuAai+vh5/93d/h3379iEnJweTJ0/GCy+8gGuuuQYA8PDDD6NXr16YN29epz9EFREROZlrAFq9evUpf5+dnY2ysjKUlZWd0UaJiEj6Uy84EREJImUnpOvo6IglNFjCw0qJsL5FLK3EEl9W0oYl6Vjih62bbaP1mu+//765LOs1xiaws3pz1dfXm8uynmKs7xfbfys5xM4lSwKxFBM7F7m5ubGa5xwDPK1k9UNjaSKWpmKTj7FUltWvjiXs9u7da9ZZPz0rZcbSXiypxvrpsfNmJfjYBI3sWmHHyjpv7NyzP/tgKS523jyTFLJr1juhpVVnaTd2jbP9tPaHpeCszw+27Ml0ByQiIkFoABIRkSA0AImISBAagEREJAgNQCIiEkTKpuA8M6Ja9a7OyPdlrGQXS+Ww7WMJKbYetryF9ULzzFrK0m6sMznrP8fScdb62T6y/mYsvchSPFavNZZq82w3YCd8rFk4AZ6CYwkpdlys9bNkE5tp15uQsrAeduy8sX5o1vuKvX/Ya7Jkm1Vn/Si9CVV2bK06u2a9PSPZNWFtI0uisn6bbButa4X1pLOuza+sF5yIiMjp0AAkIiJBaAASEZEgNACJiEgQGoBERCSIlE3BWTxpHZYo8SRnADs15p1dkCVTWJ31hPKsgx0raz8PHjxoLst6xLFkF0uN1dbWxmoFBQXmsmz2S5ayYufZmv2U9SUrKioy6yzxZM1+yVJwLH3E0mEslcRSWZ51sF5r1jXErnGWbmKzx7LklLW8N6nF0ovWtcISkN7+a+yaaGxsjNXYvrNjyLaFpeas8+btU+lh9ZEE7PcVO2cn0x2QiIgEoQFIRESC0AAkIiJBaAASEZEgUjaEkJGREXtwxh7GWQ8A2UNR76RxFs9DQYA/KGcPDD1hC892A/a2s+1gDxKt4w0ADQ0NZt2aNK+mpsZclk34xR6Asv23Hrizdizs4Td7yG2dH+8Ee2y7WYuerk7wBfBJ41jwwdpP7/axa3bo0KFm3QoFHD58uMvLAr4gBwtVsLABC2ywMAzbTws7lyy0kIzwlXf/LezzwHr/sO04me6AREQkCA1AIiIShAYgEREJQgOQiIgEoQFIRESCSNkUXGZmZiyJwtIgVuKNJTZYAoWlQaxkm7e1jncCKk/7H++kZJ62K8lipeZYko4l8ryTyU2YMCFWYymj3bt3m3WWbLISeewcv//++2adpTRZOydr/ewaZ8eQXftWao7te25urllnqTG2P1b7FpaAZFh60XpPeCZ5BPwtbazUIDs/LNHJeK4J736y97712cSOiVW3WmFZdAckIiJBaAASEZEgNACJiEgQGoBERCQIDUAiIhJEyqbgOjo6YokOlthoamqK1Vg6jCVn2CRRFpZ4YnVPigWwUyUs1caSTSyBY6WPvNvNkkCenl0sJcPSiCyVxfqBWaksluJhSTq2bmvyOZbgYsc2Ly/PtbyVSmLngfUrYxMGWvvDUm3sGLLl2fVpnX+WUmSpMXatWHW2fd7J+zy907raD+0ET19DwJfQZdvN9t/adnZtWp+pXe1fpzsgEREJQgOQiIgEoQFIRESC0AAkIiJBaAASEZEgUjYF17dv31j6gyXBrESNNw3ClrdSP8lIlJxqPZ70DEuHTZo0yayPGDEiVmMzaLJ+ZSwJxVJj1jay12R1hiX1rNlZx40bZy7LjiGbofOSSy6J1dh2sxQYS80VFBSYdStpxGYnZakxlvazjiG7BllS7dChQ2advWeta4vtD0v1Mdb7ir3XWLLL+9601sM+U9g1y/afpX+t1/TOkMy2xaqz/bG2r6v9JXUHJCIiQWgAEhGRIDQAiYhIEBqAREQkiJQNIXR0dMQe+HlCCN6Hwp6Hkcma3MoTiGAthPLz8836xIkTzbr1IJqtm+0n2x+rzQ9gT2LGzg9bh+fcA3Z7JvYwmz34Z+1ErAfRbN3sevNMBAbY1yc7D2yyv4MHD3b5Ndn2eSd0ZMEU6zWtcwbwMAwL/Vjb4p0UktXZdWi9h9j5YUEB9pCfsdbjXQfbRgs7x1bgh52zk+kOSEREgtAAJCIiQWgAEhGRIDQAiYhIEBqAREQkiDNKwT3wwANYvnw5br/9dqxYsQLA5ymZO+64A+Xl5WhtbcWcOXPw6KOP0gm46Ib16RNLubAECmth4cHSI55UiWeyqlMt72kl4k0lWekmtg6WYGItXVi6xzo/ngQTwNM6nnYnbNJBlhpjKbh9+/bFamzfq6qqzDo7tnV1dWbduvbZ9nknErSOOUsjWq2cAD7BHnvPHjhwIFZjKT12ftgxt44Lm9TNmowP8KX3ADsFydbhbZfjSdMl430C2O9Z1oapurq6y8ue7LTvgLZs2YLHHnsMkydP7lRfunQpnn32WaxduxYbNmxATU0NbrjhhtN9GRERSVOnNQAdOXIE8+fPxxNPPNGpkWNjYyNWr16Nn//855g9ezamTZuGNWvW4PXXX8emTZuSttEiItLzndYAtHDhQnzzm99ESUlJp3plZSXa29s71SdOnIjCwkJs3LjRXFdrayuampo6/YiISPpzPwMqLy/Hm2++iS1btsR+V1tbi8zMTAwZMqRTPS8vD7W1teb6SktL8dOf/tS7GSIi0sO57oCqq6tx++234ze/+Y173hZm+fLlaGxsTPxYD7RERCT9uO6AKisrUV9fj0svvTRRO378OF555RX86le/wgsvvIC2tjY0NDR0uguqq6ujPcuysrLMPkp9+vSJpTxY2s1KpngnmmKs9AhbN+uf5e0d50nJ1NfXm/W33nrLrA8fPjxWs3q1AXaPJ8BOgQE8OWUlc1jyjvWlY//Dw3qwWeth595KZAH8vO3ZsydWYwkulkpiPewYKzXIkoQs8cQm3rPOP0uHsePt7UFmvZebm5vNZVnyjB1bK+3IPjvYe42l5tjy1vXJ3lfs2LJr39OXjn0Gsf1nyVDr+mTvE+umoavJZNcAdPXVV+Odd97pVPvud7+LiRMn4oc//CHGjBmDvn37oqKiAvPmzQMA7NixA3v27EFxcbHnpUREJM25BqBBgwbhoosu6lQbMGAAcnNzE/Wbb74Zy5Ytw7BhwzB48GAsXrwYxcXFuPzyy5O31SIi0uMlfTqGhx9+GL169cK8efM6/SGqiIjIF53xAPTyyy93+vfs7GyUlZWhrKzsTFctIiJpTL3gREQkiJSdEbWtrS2WpGApJitxwdIqnllIAd+MgYx33dY2evdn+/btZt1K97D0Dev5xlKALKk2ePDgLtUA3j/Lm7KyjgvrS8bSbiNHjjTr1nlj54EdQ5YYPPlv6E6weq2xFBw7P2zd1vlnaTdvupTNjFlTUxOrvf/+++aye/fuNeuennfs/cP2k13LbP+ta4Il6fr162fW+/fv73pN6/yz88D6BjLW/rCUopWW7err6Q5IRESC0AAkIiJBaAASEZEgNACJiEgQGoBERCSIlE3BZWZmxlIkrH+Y1f+IJUcYlqjx9I5LRlLL+5osaePZH5Zu2b9/v1n3zKzpxZKBrB8WS/BZyUi23WyWzwkTJnS5zraPpcDGjx9v1seOHWvWrTQdS3axJCHrP2e9f9g1wXp8sSbCmzdvNusvvvhirLZr1y5zWTYjKmOdZ28/RnatsFSjlZpjaTeWXmTnk13jVp197rHPiWSkfK1+cqwn3cl0ByQiIkFoABIRkSA0AImISBAagEREJIiUDSFYPCEEhj0s9rT1YNiy3nCC9SCRrYPtjyeEwdqRsAeX7HizbbHCCaxVB1sHw9rrdHU7AP5w3nNcvG1UWFscFiCwXpMFAg4dOmTWa2trzbo1mR47JtZkfABi84SdwCZGtFrxMOxhvucaZw/b2fuKXePsurXq7POKbQurs/206qyFkDfgYAUlkjUL9hfpDkhERILQACQiIkFoABIRkSA0AImISBAagEREJIiUTcH17t07lgphSTUrgcLSVCw5xFIvVnKKbUey2n14U3MWlnqxtpFtt2cirFPVrXPBlvVMOsjWzdbDUm1z584165MmTTLrw4YNi9XYsWLngS1vtTUBgLq6ulitqqrKXJal3Vgqy2q7w9bBWu7s3r3brB8+fNisW6k+7wR77Fqxkl1sWXbts3QY2xbrPZuM9/GpXtM6hiy5yuqe1Jzn86CrLX50ByQiIkFoABIRkSA0AImISBAagEREJAgNQCIiEkTKpuCiKIolV1iKx0qysNSUlyc1liye9Ix34j0rDcRez5s+YskXa3lvKon1WmPpRev8jxkzxlyWTTzH+rVZyTuWXmP7+d5775l1lhpramqK1dhEbazO+uZZfdk+/vhjc9mjR4+ade/keNY150mYnWp56zr0XssMu8at69a7bu/7yjou7HMvGZ8T3UF3QCIiEoQGIBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCq5Xr16x5AZL8XhmRGWJmq72LjqxbRZvcsSTdmMpIzZDI2NtO9tuby8rth6rV5R35lPvNg4ePDhWY4ksljxj/dCsGUdbWlrMZb09Cdk1bqXPrB5ubFmAJ/WsOpuF1JMMBHwJNnaOk5G6ZNvH+s+x91Uy+jey/fEm1SzeWVU9fSA957Kr+6I7IBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCKGtrS32oNbTvoU9XGPrYEEGaz1sWc/kaEByHtCyh32ebfG2OvEcK1b3PixlWHumrm4HAOzYscOs79+/36wfPHgwVmPnh4UT2HZ7HsR7Qh8An5QsNze3y+v2hnjY8p7r0Ltuz+Rw3hBPMiaZ87YcSkbwwTuJZrIm0/syugMSEZEgNACJiEgQGoBERCQIDUAiIhKEBiAREQkiZVNwx48fjyW5WGLFSmWxZVnqw9tKxOJtJeJdj8WbYLN42+IkI/HkTVmx5B1LfFkps+rqanPZ+vp6s85a3XhSVqw+YMAAs85YrZiS1RLK00olWe2ZPNeEp02Wl2eCOcB3bJP1vmfH3HrfJqOdD1t3d5wH3QGJiEgQGoBERCQIDUAiIhKEBiAREQlCA5CIiAThSsH95Cc/wU9/+tNOtfPPPx8ffPABgM+TR3fccQfKy8vR2tqKOXPm4NFHH0VeXp57wzIyMmLpD08vOJaC8yZTkiFZaSWLN5Vk9QNjk6CxdJw3DWOdH7bdngmyAD5xmpWO80xcCPAJ7CzsektWcsi6VlhvN/aanqRnstJUyUjBeROG1jXUnZNFMt5jyM4Pe0+wSSo96/DUU2JCugsvvBD79u1L/Lz66quJ3y1duhTPPvss1q5diw0bNqCmpgY33HCD9yVEROQs4P47oD59+iA/Pz9Wb2xsxOrVq/H0009j9uzZAIA1a9Zg0qRJ2LRpEy6//HJzfa2trZ3+D7ypqcm7SSIi0gO574B27tyJgoICjB8/HvPnz8eePXsAAJWVlWhvb0dJSUli2YkTJ6KwsBAbN26k6ystLUVOTk7iZ8yYMaexGyIi0tO4BqCZM2fiySefxPr167Fy5UpUVVXha1/7Gpqbm1FbW4vMzEwMGTKk03+Tl5eH2tpaus7ly5ejsbEx8cP+Wl1ERNKL6yu4uXPnJv558uTJmDlzJsaOHYvf/e539GHwl8nKykJWVtZp/bciItJznVEvuCFDhuC8887Drl27cM0116CtrQ0NDQ2d7oLq6urMZ0Zf5tixY7E0jydRwxIi3lkXrZ5i3plP2bo9qR9vaoytuzv7RyWjFxzDer55EkIsNcb2n72mlaZj55itw3s+PakslsjznGeWGEzWbJ6eWX+ZZMz6yyQrkWfxpto8KVrv9ZOMFJx1rXQ1cXpGnzxHjhzB7t27MWrUKEybNg19+/ZFRUVF4vc7duzAnj17UFxcfCYvIyIiach1B/RP//RPuPbaazF27FjU1NTgnnvuQe/evfHtb38bOTk5uPnmm7Fs2TIMGzYMgwcPxuLFi1FcXEwTcCIicvZyDUB79+7Ft7/9bRw8eBAjRozAFVdcgU2bNmHEiBEAgIcffhi9evXCvHnzOv0hqoiIyMlcA1B5efkpf5+dnY2ysjKUlZWd0UaJiEj6Uy84EREJImVnRLVYiTQAaGtrO+N1exJ23kSJN5WUjFlYPWkd76yq3p5Vnv1JRg8uth6WMvIkBgH7uLB9Z5Ix4yY7PyyR50nBdecspF7smvCkxrwzHrPlvXVLiGObjJmTmWPHjsVqXT0eugMSEZEgNACJiEgQGoBERCQIDUAiIhJEyoYQDhw4EHu4xUII1gNd9qDP2zLF03YlGaECtrw3bMCWtwIRnoftp3pNz36yB8hscjz20J6dC6vtDjsmrG2IZz+9gQ3vQ/FkPCz2XkPdyTpv3bkd7HizABO73jxhA+81kYxJGtlrsmvcM6kde69Z61YIQUREUpoGIBERCUIDkIiIBKEBSEREgtAAJCIiQaRsCq6trS2WTPOkQVgKg6WsWErESg55lgX8qbFkpIE82+KdvC8Zk3slKzHIeCbUYglIdgzPdLKuUy3PWK/ZnUk67+Rw3jSmd/0WTzsj1g6rqxOnnWrdjLc1lfe8WXWrLQ7AJ2P06N+/v1m3PlOVghMRkZSmAUhERILQACQiIkFoABIRkSA0AImISBApnYLrap+irKysWM07CRxLQnnSI56Unnc93ZmwS8YkW6d6TWvbvT3f2DH09HdLVvrI2kbWU8wzaRqQnIkRGW8/va5ux+m8prXtbNlkTHSYjH0/1XosybrePO8rtiz7PPSsm13LLS0tsVpXj5PugEREJAgNQCIiEoQGIBERCUIDkIiIBKEBSEREgkjZFFx7e3ssuXH48GFz2erq6ljt6NGj5rL79+836yzxZaVH+vXrZy7rTTaxpIjVz2nAgAGudXj6ZCUrBefh7R0WgndWXYs3CeVJa3ln5vXU2blP1qyynhlRPdcyYG87W9abUvSkaJOVUkxG2s+bsLM+91jS06orBSciIilNA5CIiAShAUhERILQACQiIkFoABIRkSBSNgW3fft2ZGdnd6r97//+r7nsBx988FVsUgJL2HUnq99ST5ZKaTcmRDpQJFWxBLF3Vtkv0h2QiIgEoQFIRESC0AAkIiJBaAASEZEgUjaEcOjQodhEczU1NYG2RkTk7HYmYQNGd0AiIhKEBiAREQlCA5CIiAShAUhERILQACQiIkGkbAouNzc31opn2rRp5rKHDh2K1Y4cOdIt2yUiIsmhOyAREQlCA5CIiAShAUhERILQACQiIkG4B6BPPvkE3/nOd5Cbm4t+/frh4osvxtatWxO/j6IId999N0aNGoV+/fqhpKQEO3fuTOpGi4hIz+dKwR0+fBizZs3C17/+dTz//PMYMWIEdu7ciaFDhyaWefDBB/HII4/gqaeeQlFREe666y7MmTPHnGDuVLKzs2PLDx8+3Fz23HPPjdWOHTtmLssmE+vo6DDr7e3tsVpra6tr3X362If55F53p1o+IyPDXJbVmV694v/Pwfbds47TWY8H60PV1tZm1j/99NMuL+uti5yNBg4caNatz70oisz34MlcA9C//Mu/YMyYMVizZk2iVlRU1OlFV6xYgR//+Me47rrrAAC//vWvkZeXh2eeeQY33XST5+VERCSNub6C+8Mf/oDp06fjW9/6FkaOHImpU6fiiSeeSPy+qqoKtbW1KCkpSdRycnIwc+ZMbNy40Vxna2srmpqaOv2IiEj6cw1AH330EVauXIkJEybghRdewG233Ybvf//7eOqppwAAtbW1AIC8vLxO/11eXl7idycrLS1FTk5O4mfMmDGnsx8iItLDuAagjo4OXHrppbj//vsxdepU3HLLLfje976HVatWnfYGLF++HI2NjYmf6urq016XiIj0HK4BaNSoUbjgggs61SZNmoQ9e/YAAPLz8wEAdXV1nZapq6tL/O5kWVlZGDx4cKcfERFJf64QwqxZs7Bjx45OtQ8//BBjx44F8HkgIT8/HxUVFbjkkksAAE1NTdi8eTNuu+0214ZZCQqW+LLSdVEUmcuydBxLtlnpK5b2Yukwtt0s2WWlSrwpOLb/1vJsf7x19ppWkpBh6/C+prW897z17dvXrFvnpzsTgCKpoDv6a7oGoKVLl+L//b//h/vvvx9/8zd/gzfeeAOPP/44Hn/8cQCff7gtWbIEP/vZzzBhwoREDLugoADXX3990jdeRER6LtcANGPGDKxbtw7Lly/Hvffei6KiIqxYsQLz589PLPODH/wALS0tuOWWW9DQ0IArrrgC69evd/0NkIiIpL+MiH2HEUhTUxNycnLwz//8z7FBiwUUtm3bFquxr9q8detrMvaVEvs6rHfv3mbd85WdvoLrvq/g2DrYHxbrKziRrmlsbDzlc331ghMRkSBSdkI6KxTAHgqPHDkyVjs5ifdl2P/tWv937Lm7OFXdsy3edTCe9Xjv6NhdgNVaiK3Di50Lz3nz3OkAvrsr752R546O3Vmm2JcaJs912BP2JxnYe4IdK+uaYMuytl+sXY61brZ9LAR29OhRc/kv0h2QiIgEoQFIRESC0AAkIiJBaAASEZEgNACJiEgQKZuCe+utt2LpKfZ3M83NzbEaS3d4J5OzkkbeNBXjSYKxffduC1uPJVnJLs8xZNvnTQh5lmWv6UlGehODDDsu1nq8aURPepMdEza5YmZmpllnyVVr29l2e1OK1n562l6dzvKeZCTj/fzw6Eoi7cuw7WtpaTntdeoOSEREgtAAJCIiQWgAEhGRIDQAiYhIECkXQjjxANF6COiZVycZ7VVY3dswk0lGe51kbYtnHd7WKJ62ON76mW4H4G/o2p2tYTzr7s5j6F2HN7DSnU1xLck6ViGuiZ7sy45Lyg1AJxJtGzZsCLwlIiJyJpqbm5GTk0N/n3LTMXR0dKCmpgaDBg1Cc3MzxowZg+rq6rSeqrupqUn7mSbOhn0EtJ/pJtn7GUURmpubUVBQcMo//Ui5O6BevXph9OjRAP7/2/TBgwen9ck/QfuZPs6GfQS0n+kmmft5qjufExRCEBGRIDQAiYhIECk9AGVlZeGee+6hkymlC+1n+jgb9hHQfqabUPuZciEEERE5O6T0HZCIiKQvDUAiIhKEBiAREQlCA5CIiAShAUhERIJI6QGorKwM48aNQ3Z2NmbOnIk33ngj9CadkVdeeQXXXnstCgoKkJGRgWeeeabT76Mowt13341Ro0ahX79+KCkpwc6dO8Ns7GkqLS3FjBkzMGjQIIwcORLXX389duzY0WmZTz/9FAsXLkRubi4GDhyIefPmoa6uLtAWn56VK1di8uTJib8cLy4uxvPPP5/4fTrs48keeOABZGRkYMmSJYlaOuznT37yE2RkZHT6mThxYuL36bCPJ3zyySf4zne+g9zcXPTr1w8XX3wxtm7dmvj9V/0ZlLID0H/+539i2bJluOeee/Dmm29iypQpmDNnDurr60Nv2mlraWnBlClTUFZWZv7+wQcfxCOPPIJVq1Zh8+bNGDBgAObMmUOnF09FGzZswMKFC7Fp0ya8+OKLaG9vxze+8Y1O0/YuXboUzz77LNauXYsNGzagpqYGN9xwQ8Ct9hs9ejQeeOABVFZWYuvWrZg9ezauu+46vPfeewDSYx+/aMuWLXjssccwefLkTvV02c8LL7wQ+/btS/y8+uqrid+lyz4ePnwYs2bNQt++ffH8889j+/bt+Nd//VcMHTo0scxX/hkUpajLLrssWrhwYeLfjx8/HhUUFESlpaUBtyp5AETr1q1L/HtHR0eUn58fPfTQQ4laQ0NDlJWVFf32t78NsIXJUV9fHwGINmzYEEXR5/vUt2/faO3atYll3n///QhAtHHjxlCbmRRDhw6N/u3f/i3t9rG5uTmaMGFC9OKLL0Z//ud/Ht1+++1RFKXPubznnnuiKVOmmL9Ll32Moij64Q9/GF1xxRX09yE+g1LyDqitrQ2VlZUoKSlJ1Hr16oWSkhJs3Lgx4JZ1n6qqKtTW1nba55ycHMycObNH73NjYyMAYNiwYQCAyspKtLe3d9rPiRMnorCwsMfu5/Hjx1FeXo6WlhYUFxen3T4uXLgQ3/zmNzvtD5Be53Lnzp0oKCjA+PHjMX/+fOzZswdAeu3jH/7wB0yfPh3f+ta3MHLkSEydOhVPPPFE4vchPoNScgA6cOAAjh8/jry8vE71vLw81NbWBtqq7nViv9Jpnzs6OrBkyRLMmjULF110EYDP9zMzMxNDhgzptGxP3M933nkHAwcORFZWFm699VasW7cOF1xwQVrtY3l5Od58802UlpbGfpcu+zlz5kw8+eSTWL9+PVauXImqqip87WtfQ3Nzc9rsIwB89NFHWLlyJSZMmIAXXngBt912G77//e/jqaeeAhDmMyjlpmOQ9LFw4UK8++67nb5PTyfnn38+3n77bTQ2NuK//uu/sGDBgrSaSLG6uhq33347XnzxRWRnZ4fenG4zd+7cxD9PnjwZM2fOxNixY/G73/0O/fr1C7hlydXR0YHp06fj/vvvBwBMnToV7777LlatWoUFCxYE2aaUvAMaPnw4evfuHUua1NXVIT8/P9BWda8T+5Uu+7xo0SI899xz+OMf/5iY3wn4fD/b2trQ0NDQafmeuJ+ZmZk499xzMW3aNJSWlmLKlCn4xS9+kTb7WFlZifr6elx66aXo06cP+vTpgw0bNuCRRx5Bnz59kJeXlxb7ebIhQ4bgvPPOw65du9LmXALAqFGjcMEFF3SqTZo0KfF1Y4jPoJQcgDIzMzFt2jRUVFQkah0dHaioqEBxcXHALes+RUVFyM/P77TPTU1N2Lx5c4/a5yiKsGjRIqxbtw4vvfQSioqKOv1+2rRp6Nu3b6f93LFjB/bs2dOj9tPS0dGB1tbWtNnHq6++Gu+88w7efvvtxM/06dMxf/78xD+nw36e7MiRI9i9ezdGjRqVNucSAGbNmhX7k4gPP/wQY8eOBRDoM6hbog1JUF5eHmVlZUVPPvlktH379uiWW26JhgwZEtXW1obetNPW3NwcvfXWW9Fbb70VAYh+/vOfR2+99Vb08ccfR1EURQ888EA0ZMiQ6Pe//320bdu26LrrrouKioqiY8eOBd7yrrvtttuinJyc6OWXX4727duX+Dl69GhimVtvvTUqLCyMXnrppWjr1q1RcXFxVFxcHHCr/e68885ow4YNUVVVVbRt27bozjvvjDIyMqL/+Z//iaIoPfbR8sUUXBSlx37ecccd0csvvxxVVVVFr732WlRSUhINHz48qq+vj6IoPfYxiqLojTfeiPr06RPdd9990c6dO6Pf/OY3Uf/+/aP/+I//SCzzVX8GpewAFEVR9Mtf/jIqLCyMMjMzo8suuyzatGlT6E06I3/84x8jALGfBQsWRFH0eQzyrrvuivLy8qKsrKzo6quvjnbs2BF2o52s/QMQrVmzJrHMsWPHon/8x3+Mhg4dGvXv3z/667/+62jfvn3hNvo0/MM//EM0duzYKDMzMxoxYkR09dVXJwafKEqPfbScPAClw37eeOON0ahRo6LMzMzonHPOiW688cZo165did+nwz6e8Oyzz0YXXXRRlJWVFU2cODF6/PHHO/3+q/4M0nxAIiISREo+AxIRkfSnAUhERILQACQiIkFoABIRkSA0AImISBAagEREJAgNQCIiEoQGIBERCUIDkIiIBKEBSEREgtAAJCIiQfx/r+PUouf/70sAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "configs=f\"{bundle_root}/configs/inference.yaml\"\n",
    "\n",
    "!PYTHONPATH={bundle_root} python -m monai.bundle run testing \\\n",
    "    --meta_file {bundle_root}/configs/metadata.json \\\n",
    "    --config_file \"{configs}\" \\\n",
    "    --ckpt_path \"./outputs/model_final_iteration=75000.pt\" \\\n",
    "    --bundle_root {bundle_root} \\\n",
    "    --out_file test.pt\n",
    "\n",
    "test = torch.load(\"test.pt\", map_location=\"cpu\")\n",
    "\n",
    "plt.imshow(test[0, 0], vmin=0.4, vmax=1.0, cmap=\"gray\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f581c36e-4033-4005-8969-76205470588e",
   "metadata": {},
   "source": [
    "The same can be done by creating the parser object, filling in its configuration, then resolving the Python objects from the constructed bundle data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "cf8438b3-4c7d-48c4-bb41-ed7def73753f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:08<00:00, 122.14it/s]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f5dac07b220>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGfCAYAAAAZGgYhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOC1JREFUeJzt3Xtw1fWd//F3AiREkpxAIDdIMCgSQEHlZoq1FlIZtnVwYbq2Y2dp16mjG6mAO23Zqdo6rbE6W6ndiNW1oLNls9JdbG1HqBtLqF1AiLoK1HDVBHLjlpMLksTk+/vD8fwM3/cb882Fz8nh+Zg5M/Wdj998vuf26dfvK+9PnOd5ngAAcJHFu54AAODSxAIEAHCCBQgA4AQLEADACRYgAIATLEAAACdYgAAATrAAAQCcYAECADjBAgQAcGL4YB24tLRUHn/8camvr5eZM2fKL37xC5k7d+5n/nvd3d1SW1srKSkpEhcXN1jTAwAMEs/zpKWlRXJyciQ+/gLXOd4gKCsr8xISErxf/epX3r59+7xvf/vbXlpamtfQ0PCZ/25NTY0nIjx48ODBY4g/ampqLvh9PygL0Ny5c73i4uLIP3d1dXk5OTleSUnJZ/67TU1Nzp80Hjx48ODR/0dTU9MFv+8H/B5QR0eHVFZWSlFRUaQWHx8vRUVFsmPHDt/49vZ2aW5ujjxaWloGekoAAAc+6zbKgC9AJ0+elK6uLsnMzOxRz8zMlPr6et/4kpISCYVCkUdubu5ATwkAEIWcp+DWrFkj4XA48qipqXE9JQDARTDgKbixY8fKsGHDpKGhoUe9oaFBsrKyfOMTExMlMTFxoKcBAIhyA34FlJCQILNmzZLy8vJIrbu7W8rLy6WwsHCgfx0AYIgalL8DWr16tSxfvlxmz54tc+fOlbVr10pbW5t861vfGoxfBwAYggZlAbr99tvlxIkT8uCDD0p9fb1ce+21smXLFl8wAQBw6YrzPM9zPYlPa25ullAo5HoaAIB+CofDkpqaav7ceQoOAHBpGrRecP21evVqXzpu9+7d6timpiZf7fDhw+rYM2fO9Htulzrrj8uCXExbxxg2bFig8Va9q6ur13Oxxg4frn88tN5WVr+rkSNH9voYF5qL9twGmd+F6tpxgoy9kCDnE/QYQZ5D631lnU93d7dat46j1UeMGBHo2NZ72TqO5ty5c2rdeh8mJCSo9fHjx/tqt9xyizp2xYoVvZydH1dAAAAnWIAAAE6wAAEAnGABAgA4EbUhhOTkZN+Ns87OTnXs22+/7at99NFHgzEtSLAbyEGPEU2v20DMxbopjOhghRCssEGQcEbQY1us8VqAIEhgwTqGiKi7Epw6dSrQsXuDKyAAgBMsQAAAJ1iAAABOsAABAJxgAQIAOBG1KbizZ8/6WmqMGTNGHZuenu6rnb8h3lBXUFCg1rVtzkX09kQAerKSjlY9SPsfK+kZtLWQ1bqno6Oj12PD4bBat1r0pKWl+WoHDx5Ux/YHV0AAACdYgAAATrAAAQCcYAECADjBAgQAcCJqU3Bjx471JTSysrLUsVo/o/M3s/uE1U/OSo+4oKVhrPmNGjVKrZOCAwZekESaVhtsVpIuKSlJrVub4Gkp4sE4H66AAABOsAABAJxgAQIAOMECBABwggUIAOBE1Kbg0tLSfMmNUCikjtUSb1Y6rLW1Va1b/Zms+mDSkjYHDhxQx1qpFwCXHiul197ertatVLCWjrOO0R98ewEAnGABAgA4wQIEAHCCBQgA4ETUhhA6Ojpk2LBhPWpayx2LtdGSdSPN2oAq2kVTCyEAA+/878G+jLW+D5ubm9X68OH+pWEwvmu4AgIAOMECBABwggUIAOAECxAAwAkWIACAE1Gbgjt37pyvHcSIESPUsVqCzdpoyUKaDMBQon3HpaamqmOtektLi1rXUnCD0ZaMKyAAgBMsQAAAJ1iAAABOsAABAJxgAQIAOBG1Kbhhw4b5+hpZm8xprBSctYGblbCzNmwCgIshSPrs5MmTat36Hhs9enSvfycpOABAzGABAgA4wQIEAHCCBQgA4AQLEADAicApuO3bt8vjjz8ulZWVUldXJ5s3b5bbbrst8nPP8+Shhx6SZ599VpqammT+/Pmybt06mTx5crCJDR/u60cUZGdAKwVHzzcgNliJVs/zfLXExER1rJV+1XqhXeg42veK9R1kpXmtXUsnTpyo1rVk27vvvquObW1tVeuW7OxsX017Xvsr8BVQW1ubzJw5U0pLS9WfP/bYY/Lkk0/K008/Lbt27ZJRo0bJokWL5Ny5c/2eLAAgdgS+Alq8eLEsXrxY/ZnnebJ27Vr5wQ9+IEuWLBERkRdeeEEyMzPlpZdekq997Wu+f6e9vV3a29sj/2ztUQ4AiC0Deg/o6NGjUl9fL0VFRZFaKBSSefPmyY4dO9R/p6SkREKhUOSRm5s7kFMCAESpAV2A6uvrRUQkMzOzRz0zMzPys/OtWbNGwuFw5FFTUzOQUwIARCnnrXgSExPNG3sAgNg1oAtQVlaWiIg0NDT0SFE0NDTItddeG2xiSgpO2/nUYqVbrMXO6nNEL7jolpOTo9a1VJJ1FY7oMGbMGLVuvcZWakz7nrBSbQkJCWrdGt/R0aHWtYTup+9tf5p1Punp6Wo9LS1NrWtztP4LkpWCC4fDan3ChAm9+n39NaD/CS4/P1+ysrKkvLw8UmtubpZdu3ZJYWHhQP4qAMAQF3hJa21tlUOHDkX++ejRo/L222/LmDFjJC8vT1auXCk//vGPZfLkyZKfny8PPPCA5OTk9PhbIQAAAi9Ae/bskS9+8YuRf169erWIiCxfvlw2bNgg3/3ud6WtrU3uuusuaWpqkhtvvFG2bNliXi4DAC5NgRegm2+++YJ/ERsXFycPP/ywPPzww/2aGAAgtjlPwVlGjBjhCxKkpKSoY7UbgFYIwbrpaN1c1NppDEZLClxYUlKSWrdu6Go3oseOHauOtW7EHj9+XK3Tzmlw5Ofnq3Xrc3/69Gm1rt3M/yQgdT4r+GCNt27m33zzzb6a1f3lV7/6lVq3Wo2NGzdOrW/dutVXq6qqUsdakpOT1boWoBiM9z3NSAEATrAAAQCcYAECADjBAgQAcIIFCADgRNSm4M6ePetLm1lJKC09EjSxYW0eRQouOnz44YeB6lo6znqNU1NT1bo1vrGx0Vdjv6v+sxKNZ86cUet//etf1fqnu/F/wvo7xLNnz6r1SZMmqfVTp06pde341nuzpaVFrVutxv7mb/5GrdfV1flqf/7zn9WxQb8PtblY37/9wRUQAMAJFiAAgBMsQAAAJ1iAAABOsAABAJyI2hSctlPq6NGj1bFaislKJcXH62uuVR+IhB0Gz4EDB9S6tnmWlbLKyMhQ69YGYVoqy9oIzNoEz9qs7FJmfb6tNJm1WeT+/ft9tXfeeUcda/WTs/rPWa+ntqGl1XeytrZWrVvjrTlq33FBv5us3nbahnRa6q6/uAICADjBAgQAcIIFCADgBAsQAMAJFiAAgBNRm4LTesGNHz9eHav1YbL6tVn9vawUHKKblYT6v//7P1/NSkZqiR8RkSuuuEKtazt3WjvwWnUrCWX1JrsUvPnmm2rdSi9a/dq0z7K1G67V38zahVRL2Ino/QGnTJmijrVYO8J+85vfVOvHjh0LdPwgtPeh1auuP/jWBQA4wQIEAHCCBQgA4AQLEADAiagNIcTFxfkCA1pbHBG97YrFOkaQVjzWjW9Et6qqKrVubRBm3aAuLCzs9VirnY/VduXIkSNq/VLY8G7v3r2B6kFYbX7GjBmj1rdu3arWm5qa1LrWisl6zebOnavWV65cqdabm5vV+k033aTWg7BCMlqIazC+97gCAgA4wQIEAHCCBQgA4AQLEADACRYgAIATUZuCGz58uC/dZrXXOX/jOhE7gWIl5qy6lZpD7LDa4litRzo6Ony1a665Rh37hS98Qa1PnjxZrVdUVKh1bUM1azMx+GmbCF6ofvjw4UDHD5LUy8rKUutWEveyyy5T6+FwuNe/05KcnKzWte9Ua2O8/uAKCADgBAsQAMAJFiAAgBMsQAAAJ1iAAABORG0KTusFp6WPRPT0iJUoCdLz7UJ1xD5tkzERkQMHDvhqp06dUsfOmTNHrU+fPl2tW/29tJ5y+/btU8eeOHFCrbe3t6t163OlsTZ0tBKqQVhJVCuNaH02tf5u1rytc7dStFZqTOupZm0uaCXvXnjhBbVu0TbqC4VC6ljrtbe+D0eNGuWrWa9Pf9JxXAEBAJxgAQIAOMECBABwggUIAOAECxAAwImoTcElJCT4do20kixakiPIWBE74REkYdfd3a3WEVu0HlxpaWnq2A8++ECtf/jhh2q9oKBArd9www2+mtUjzOpjZvWOa2tr6/X8rPe+9XmzdtzUUmZa/zEReydOK3mo7VqqpbpEREaOHKnWU1JS1Hpqaqpa11KA1i6sVsLOSqpZaUztPK1Un3X+48ePV+vjxo3z1Qaj9yBXQAAAJ1iAAABOsAABAJxgAQIAOBFoASopKZE5c+ZISkqKZGRkyG233SZVVVU9xpw7d06Ki4slPT1dkpOTZdmyZdLQ0DCgkwYADH2BUnAVFRVSXFwsc+bMkY8++kj++Z//WW655RbZv39/JGWxatUq+cMf/iCbNm2SUCgk9957ryxdulT+8pe/9HuyVspMS7B1dXWpY4P2stLGW4m5ID21MHRpvbys9+b5Sc5PWOkrKzU3ZcoUX+3mm29Wx1533XVq3dpBU0tlWZ8H63PV3Nys1q1k1/vvv9/rY1jJO60XmoiemrOSdNaxLUHPPwgtjSii97YT0ZNtVnrROv9jx46pde2iwTp2fwRagLZs2dLjnzds2CAZGRlSWVkpN910k4TDYXnuuedk48aNsmDBAhERWb9+vUydOlV27typRkkBAJemft0D+uT/UX2yQldWVkpnZ6cUFRVFxhQUFEheXp7s2LFDPUZ7e7s0Nzf3eAAAYl+fF6Du7m5ZuXKlzJ8/X66++moREamvr5eEhATfH+VlZmZKfX29epySkhIJhUKRR25ubl+nBAAYQvq8ABUXF8vevXulrKysXxNYs2aNhMPhyKOmpqZfxwMADA19asVz7733yu9//3vZvn27TJgwIVLPysqSjo4OaWpq6nEV1NDQIFlZWeqxEhMT1RYcw4YN893st27+azd6B6LljogeQrBu6A0FWiuRyy+/XB2rtfoQsVuJtLS0qPXBuHkZbawb/NXV1Wrd2sTLuhGdn5/vq02cOLGXs/uY1RZHaxljhSqsUIF1c976nbNmzfLVDh48qI616tbGbtpn1gofWWEQq25tgqd9h9XV1aljrZY2WvsbEfvzc+TIEbWuseZtvW4ZGRm+mhX66M9tk0BXQJ7nyb333iubN2+W1157zfehmDVrlowYMULKy8sjtaqqKqmurpbCwsI+TxIAEHsCXQEVFxfLxo0b5be//a2kpKRE7uuEQiFJSkqSUCgkd955p6xevVrGjBkjqampsmLFCiksLCQBBwDoIdACtG7dOhHx//3B+vXr5Zvf/KaIiDzxxBMSHx8vy5Ytk/b2dlm0aJE89dRTAzJZAEDsCLQAWX+c9mkjR46U0tJSKS0t7fOkAACxj15wAAAnonZDus7OTl9rGyvJoiU8rHSHJciGWtbGWVY6LJrk5eX5aloiScTe8Ovs2bNq3WpFpL0WVprKeg6tJJBV11JmLl4f6+/frM3KrLYrWusaa9O0UCik1qdNm6bWtff+iRMn1LHWa2x9fqzEqJZctVoIXXnllWr9wIEDav29997z1aw0ovX6WO8rK0WrtcVJSkoKdAwrdWo959omiNrnW8ROulrJtvT0dF/N+hMZ7fnuLa6AAABOsAABAJxgAQIAOMECBABwggUIAOBE1Kbg4uLifMkaq5+RxkrBWX/L9NFHH6l1LYFijR0KtCSY1ZfMer4/3f/v06wkVHJysq9mJYSsHmRWTzErOaTVrfSe1VPM2slXSweePHlSHWslJq2kmlXXUllaMk5EZPLkyWrden20BJe1kZ6VarN62FmfQ+19aPUStOZy0003qXWt64rVT+7w4cNq3UrHWeO187F6u02aNEmtWwk26/OmpSCtz5X1+bF63mm9O63ecy+88IJa7w2ugAAATrAAAQCcYAECADjBAgQAcIIFCADgRNSm4Do6OnwprCC7FFr9lqyUlZX40upWmmgo0NI92i6pInp6TcROQmlpKus4VjrMeh2sdI81d62nmvU7rZSVlZrT+qQdO3ZMHWv107Pen1aPOI21E6W1O+vx48fVepAdRK1EltVTzHqvaM/tZZddpo61EnZWvzbtOLNnz1bHTp8+Xa1b52+9J7TUpfW+spKOVm8/63nRPhNWL8Ggv1Mbb33/9gdXQAAAJ1iAAABOsAABAJxgAQIAOMECBABwImpTcImJib7UkpXC0Pq1WT3fgu5mqqWV4uOH7rrd2trqq7355pvqWCt5ZqV7rASXlpyy+mRZaR0rYWellbTXyHr/WEkgK2Gn9cmy+q9ZiTQrBWclnrSUVdC+ho2NjWpdO09rHlaqz/pMjB07Vq1rO25afeOs87HScVpfPusYubm5at1inad2fGsnUytdaiXYrD5u1ntIY6VLrSShtmOx1RuxP4buNykAYEhjAQIAOMECBABwggUIAOBE1IYQuru7fW1zrJtx2o1B6+a0Vbdu0lmtey4F1g1Kq27dcK+urvbVrLCBFXCwXnurNUxBQYGvZgUZLFYIQ3uvWDe5rZv51o1oKyihBQ6sY1jPofUe125mW6Eci7Uhn3UcLZxgPVfWzXbr/LX3iha+ERFJS0tT61pI4kJz0V5/63daQSirbr23tO8mKyRhBVaCfL8NRviKKyAAgBMsQAAAJ1iAAABOsAABAJxgAQIAOBG1Kbi4uDhfYs1KQmktL4ImSqyEkJb8sMZCpyVtzpw5MyDHtjaCe++993y1SZMmqWPHjx+v1q2ElJbWstqoWG1+rLRbkE3MrESWVbfa4mjpQCvRaH0GrbZFQTYxs1JWQdotiejpRSvVZrX/CToX7XWzXsugG1oG2SzTOh8r7Wa1C9LU1tb2emxvcQUEAHCCBQgA4AQLEADACRYgAIATLEAAACeiNgXX2dnZ6w2XtJ5LVu8ji5V60ZImQVMsuPi0DdysjfesepB0XHZ2tjp24sSJat1KH1mJJ63nndULLWgCVOvtZ/XBsz6T1ufNqnd2dvpqVlLL+mxade38refESo1p8xOxU4DacxskWStivyes51Cbe9D0njVHLb1onXt/cAUEAHCCBQgA4AQLEADACRYgAIATLEAAACeiNgU3bNgwX0LDSrK0t7f7alYfprNnzwaah5b6sZJAVqLEStoguh0/flyta0kjK5F25MiRXh9DxN61taWlxVcbN26cOtaqZ2RkqHXts2Lteqt91kSCp8y0z5CV1Aq6e6x27KDpMOs8rR1eteME3ZnWmqOVDtTScUEScxeqD0biTcMVEADACRYgAIATLEAAACdYgAAATgQKIaxbt07WrVsn77//voiITJ8+XR588EFZvHixiHx8g+7++++XsrIyaW9vl0WLFslTTz0lmZmZgSfW1dXlu0Fm3bzTbhhaN+6s+oXmcT4rhGDddLRu6KL3rNfeukGtbZBm3aC1XjfrBq22uZnVcmf06NFqXdtgTkTf7E5E3/DOeh+ePHlSrVutXqyb30FYr4O1UZ/2vFjzaGtrU+tWayGtboUkrOfQGh8kQGC936zvIOt8rPehdvwgm9eJ2OevhRCCbC7YW4HeeRMmTJBHH31UKisrZc+ePbJgwQJZsmSJ7Nu3T0REVq1aJS+//LJs2rRJKioqpLa2VpYuXTrgkwYADH2BroBuvfXWHv/8k5/8RNatWyc7d+6UCRMmyHPPPScbN26UBQsWiIjI+vXrZerUqbJz50654YYbBm7WAIAhr8/X3l1dXVJWViZtbW1SWFgolZWV0tnZKUVFRZExBQUFkpeXJzt27DCP097eLs3NzT0eAIDYF3gBevfddyU5OVkSExPl7rvvls2bN8u0adOkvr5eEhISfK3qMzMzpb6+3jxeSUmJhEKhyCM3NzfwSQAAhp7AC9CUKVPk7bffll27dsk999wjy5cvl/379/d5AmvWrJFwOBx51NTU9PlYAIChI3ArnoSEBLnyyitFRGTWrFmye/du+fnPfy633367dHR0SFNTU4+roIaGBsnKyjKPl5iYqCZO2tvbe53O0RIeVksTq5WGlRIJsrGdlTIaTEHbdwwmK8GlJZ60Td1E7NYoVirJ2jhNG2+l3axja0k6ET0FZyU9rRSclWyy3rdaas46d+t9aG2ypr2HrGNbSaigKTPt82a9l63PoHVsrW4dw2q5YyXSrBY12vkETaRZgnzGrc/PQCTyrOeqP/qdv+zu7pb29naZNWuWjBgxQsrLyyM/q6qqkurqaiksLOzvrwEAxJhAV0Br1qyRxYsXS15enrS0tMjGjRtl27ZtsnXrVgmFQnLnnXfK6tWrZcyYMZKamiorVqyQwsJCEnAAAJ9AC1BjY6P8/d//vdTV1UkoFJIZM2bI1q1b5Utf+pKIiDzxxBMSHx8vy5Yt6/GHqAAAnC/QAvTcc89d8OcjR46U0tJSKS0t7dekAACxj15wAAAnonZDuri4ODPRcT4t2Wb12grST05kYHo8DaYlS5aodSutoyWhtM3OROz0jfXcWsk2LSFlpb2C9tmzkmpaist67a1NCq00mVa3UmPZ2dlqvbW1Va1bx9F6qlnvQ+sYVkpRq1uvQ9C+cdZnWDuONdZK71l1LalnfR6Cfpat9KI1F4313FrHthJ5mqAb71nz1tKbF0oz9xVXQAAAJ1iAAABOsAABAJxgAQIAOMECBABwImpTcB0dHb5ER5CUiNXzzTpGkF5wVqIkaB+mIKzkTE5Ojlq3UjzaXCZNmqSOtfp+WSk4K32l7QgbJNlzoblYyTstZWcdw0pAWu+hM2fO+GrW+VhpN+t3Wqkk7Tyt94S1A6+V9tPq1vlYnxMrZZaSkqLWtfTiQPVO097j1nNi1YN+lrU5Wq+P9dxan9mB6D8XdLdVrT4YKV+ugAAATrAAAQCcYAECADjBAgQAcIIFCADgRNSm4OLj430pOCuFodWtnkhWSsRKvWhJFhe7kFopliNHjqj1sWPHqnXtPK20l+X06dNq3UqZac+h9XxbqRwrUVRbW6vWtbSSNb8g/cqsY1u97U6ePKnWrRRckMSk9Z44ceKEWrfOX0tZWc+3lWqzzj85ObnXcwnaI816DrVefdZn00opWju8Bum1ZiUarbRo0O8P7fhtbW3qWKtufZa112L37t0BZtc7XAEBAJxgAQIAOMECBABwggUIAOBE1IYQmpubfTcTg2xWZm1gZt3QtGg3Bq3WGNaNS+tm6UB45ZVX1Lo1x3Hjxvlq2mZnIvYNV2tjM+v1CXKT27qxbj231uussdquhMNhtW7doNZuoE+ZMkUdO2HCBLUedOO9Y8eOqXWNFTawAgRamx8rVGDVrfZMQTaCszYAtEIyVl1731rPq1W3Xp8gmxRqLZtE7O+goCEE7fyt0Is1l1OnTqn1yZMn+2obN24MMLve4QoIAOAECxAAwAkWIACAEyxAAAAnWIAAAE5EbQouISHBl1CxEitaesRqgxFkozbrOFaaajDTbkFZ56+1rrHa2UCnvQ+1DdZE7JZI6enpan38+PG9Po7VQshqN2W1xdFSjVa7GOvY1ufKSjVqm+BZCbOgbXGCzMNKOlpzaWlp6fXxrbRbQ0ODWre+V4LMxfosNzc3Bzq2dj7vvPOOOrY/uAICADjBAgQAcIIFCADgBAsQAMAJFiAAgBNRm4I7ceKEL/1ipUS0/lRWqi3oRnVaAsdKmLnYqA6Dx+qRl5eX56vl5+erYy+//HK1bvVly83NVetavzarv5f1frP6tWnvcavPmrWBmdWDLMimbEH7NFqf2SApRWujNqv3XlNTk1rX0nTW94H1XDU2Nqp16znXkm1Bk7hWwlB7/Qfje4wrIACAEyxAAAAnWIAAAE6wAAEAnGABAgA4EbUpOK0XnJWC03YvtHY0DFrXWD24rESJNW9EBytNZfVxu+KKK3w1KwVn1a3eXDU1NWpd651m7TZqJdjef//9Xs/lxIkT6liLtQurNUctHWelrKwknZUk1HqkWZ9Z67my0mRW77jjx4/7akeOHFHHVldXq3XrPWEl77TUYJB+fyIDswNvf3AFBABwggUIAOAECxAAwAkWIACAE1EbQgiHw74bZNamUpqgbSOsNiBaSx/rpqjV/gcXn9YGZdKkSerYadOmqXUtbCCit36ybsIHvYFubfq1f/9+X8264Wy99626FsKwQjlWYCMoLShgzc8K91g30LXnxQohWKECq269Pm+88YavVl9fr461Ag7Wc2vNXatboQ+rPtiv82fhCggA4AQLEADACRYgAIATLEAAACdYgAAATvQrBffoo4/KmjVr5L777pO1a9eKyMetLe6//34pKyuT9vZ2WbRokTz11FOSmZkZbGLDh/uSG1YKTktyWIk0K90RpG6lUkjBDR5rcy+r1Y2WbLNScNbGc9omcNZcrNf+1KlTal3bkE3ETl9p7Zy09jwidnsZ63eOHj3aV7Nat1ipKSsFaNU11vlYr711Plqi1Tq21f7mgw8+UOtWCs4aH0TQDfk04XBYrVvvqyDP4WDo8xXQ7t275Ze//KXMmDGjR33VqlXy8ssvy6ZNm6SiokJqa2tl6dKl/Z4oACC29GkBam1tlTvuuEOeffbZHv/vKRwOy3PPPSc/+9nPZMGCBTJr1ixZv369/O///q/s3LlzwCYNABj6+rQAFRcXy5e//GUpKirqUa+srJTOzs4e9YKCAsnLy5MdO3aox2pvb5fm5uYeDwBA7At8D6isrEzefPNN2b17t+9n9fX1kpCQ4Ptv55mZmeZfBZeUlMiPfvSjoNMAAAxxga6Aampq5L777pNf//rXgW4uXsiaNWskHA5HHtZ+KACA2BLoCqiyslIaGxvl+uuvj9S6urpk+/bt8q//+q+ydetW6ejokKamph5XQQ0NDZKVlaUeMzEx0ez1dH6yyEpmBEnBWQk2K92j9acK2lfJ6v0Ev6uuukqtT506Va1nZ2er9fHjx/tqVm836/W0NgJrbGz01U6ePKmO1XqeiYi0tbWpdSutpdWt/1ydmpqq1q1Un/bZtN6zVm87K0Vq9Wvr6OjoVU3E3hjQ+t7Qntu6ujp1rPV/eHft2qXWrU39ooW1+aX1OliJSet9ONACLUALFy6Ud999t0ftW9/6lhQUFMj3vvc9yc3NlREjRkh5ebksW7ZMRESqqqqkurpaCgsLB27WAIAhL9AClJKSIldffXWP2qhRoyQ9PT1Sv/POO2X16tUyZswYSU1NlRUrVkhhYaHccMMNAzdrAMCQN+DbMTzxxBMSHx8vy5Yt6/GHqAAAfFq/F6Bt27b1+OeRI0dKaWmplJaW9vfQAIAYRi84AIATUbsjqpaIsXZM1FJMVqLGSutY/aa0NJ01D+sYQ5V1PkF3qNT6tU2ZMkUdm5GRodatFKWVatTSWtbfolmJNCshpfX9snq+nThxIlDdSjEF6TNo7ZSqJQNF9MRbXl6eOjYnJ0etW6+DdT7a62P9aYfVq89K5GkpRSu9tnfvXrX+3nvvqfWhmmgNukuulQwdaLH1jQkAGDJYgAAATrAAAQCcYAECADjBAgQAcCJqU3BxcXG+ZI2VbNMSG0HTRNZuq1q6x0rSDQVass3qv2btNmqxdtHUElVW2s16ja2eakHSOvv27VPrVh83K/Gkja+trVXHaokskcHdcdLa/fLgwYNqXXuPp6SkqGOtusU6Ty0xeeWVV6pjrV07rfSilnY8v4XYJ7Zv367WY21bmKApOCvVONC4AgIAOMECBABwggUIAOAECxAAwImoDSG0traarV3Op7WGCbpjq9VeRqtbgYXeztelz33uc77aNddco461whbWjX+rPm7cuF7OTuT06dNqvaGhQa2Hw2G1rrXGsW7OW8GHIIGIM2fOqGMHM2wQlHXDWWs7Y7XzsTa1sz4/VuserS3QqFGj1LHWvI8fP67Wd+/e7att3rxZHWu184k11nNoCdL6qT+4AgIAOMECBABwggUIAOAECxAAwAkWIACAE1Gbguvu7vYliKz0mdaS4+zZs+ZxgwjSkiKaEk8WLcVkJZishNC5c+fUurXJ2pEjR3w1q9WJ9bodO3ZMrVstl6zUHHrHak9kJSOtNkypqalqXUu8WcmrqqoqtV5eXq7WX3zxRbWO3rtY6UCugAAATrAAAQCcYAECADjBAgQAcIIFCADgRNSm4Orr62X48J7Ts3pzackuK01lpTuszces3zlU7d2711c7dOiQOvb85/+z6tZzVVdX56tZvdMQHbRNBEXsvn5W2s16T7z//vu+mtVL8c9//rNa/81vfqPW0X9Be2n2FVdAAAAnWIAAAE6wAAEAnGABAgA4wQIEAHAialNwJ0+e9PWdspJqWg+poLt5WskuLZlj9Yez+sxZPeys8xnMPkxa+giXNm130uzsbHWs9R63PhNWjzitF+A777yjjrV2Mw3a1/FSFh+vX2tYzyE7ogIAYhoLEADACRYgAIATLEAAACeiNoTQ3Nzsu3Fm3UhraWnx1awb+VZrEGu8ttmdFR4Iugnexdr0CRCxAwETJkzo9Vhr00Vrg8Hq6mq1fvr0aV/tv/7rv9Sx2mcQwQQNFVys55wrIACAEyxAAAAnWIAAAE6wAAEAnGABAgA4EbUpuNraWl+tqalJHatthmWlcqx0RzgcVutaGx0rCWSl3az2P8DFZG0ylpKS4quNGTNGHWu1rLISoEeOHFHr27Zt89UaGxvVseg/K0FsfZdZ9YHGFRAAwAkWIACAEyxAAAAnWIAAAE6wAAEAnAiUgvvhD38oP/rRj3rUpkyZIu+9956IiJw7d07uv/9+KSsrk/b2dlm0aJE89dRTkpmZOSCTPXfunFo/efKkrxZ0AyZrfGJioq9mJemsY7e2tgb6nWy0hf4YO3asWp85c6Zanz59uq9mfWat93JVVZVa37p1q1q3Eq0YHNaGgRarZ+ZAC3wFNH36dKmrq4s8Xn/99cjPVq1aJS+//LJs2rRJKioqpLa2VpYuXTqgEwYAxIbAfwc0fPhwycrK8tXD4bA899xzsnHjRlmwYIGIiKxfv16mTp0qO3fulBtuuEE9Xnt7e4/u0tbf7wAAYkvgK6CDBw9KTk6OTJo0Se64445Iu/XKykrp7OyUoqKiyNiCggLJy8uTHTt2mMcrKSmRUCgUeeTm5vbhNAAAQ02gBWjevHmyYcMG2bJli6xbt06OHj0qn//856WlpUXq6+slISFB0tLSevw7mZmZUl9fbx5zzZo1Eg6HI4+ampo+nQgAYGgJ9J/gFi9eHPnfM2bMkHnz5snEiRPlxRdflKSkpD5NIDExUb3RDwCIbf3qBZeWliZXXXWVHDp0SL70pS9JR0eHNDU19bgKamhoUO8Z9fX3abQdUa3+a1bCzEqJaL3grGNbO5xa462dVYHeGD16tFqfNm2aWs/JyVHrV111la9mJU6PHj2q1v/7v/9brbPrb3Swvt+CpuMGWr/+Dqi1tVUOHz4s2dnZMmvWLBkxYoSUl5dHfl5VVSXV1dVSWFjY74kCAGJLoCugf/qnf5Jbb71VJk6cKLW1tfLQQw/JsGHD5Otf/7qEQiG58847ZfXq1TJmzBhJTU2VFStWSGFhoZmAAwBcugItQMeOHZOvf/3rcurUKRk3bpzceOONsnPnThk3bpyIiDzxxBMSHx8vy5Yt6/GHqAAAnC/QAlRWVnbBn48cOVJKS0ultLS0X5MCAMQ+esEBAJyI2h1RNQkJCWpdS5lZOzdau0JqaTcREc/zfDUr2WP9zou1uyBiVygU8tUmT56sjp00aZJat9Ko2m6mx48fV8f+4Q9/UOuk3YYm7ftNhB1RAQAxjgUIAOAECxAAwAkWIACAE0MqhGBt4KYFC6ybay5Yc7HaYETT3BEdLr/8cl/N6hxvva+GDRum1o8dO+ar/c///I869vTp08YMMRRZ36nae8jq2dmflmJcAQEAnGABAgA4wQIEAHCCBQgA4AQLEADAiSGVgrPa6GgtcKzWOkFpaZCgmztZ6SOrbm2ah9hnbTKXkZHhq6Wmpqpjx48fr9a1jRtFRCorK321ffv2WVPEEGSl3azvGq1ufV/1B1dAAAAnWIAAAE6wAAEAnGABAgA4wQIEAHBiSKXgLFb6TGMlOazN5LQ0iLYBnkiwvkoidm8lDRt+XRouu+wyta6lOpOTk9Wx2uZ1InaybefOnb2cHYaqoP0otf5ug5HO5QoIAOAECxAAwAkWIACAEyxAAAAnWIAAAE7ERAouyA6iVgrOSrBp9aCJEqsvXZB+ddb8rLmwq+rQlJKSotbT09N9Nev988c//lGtv/rqq32fGGJSkBSclRTuD66AAABOsAABAJxgAQIAOMECBABwggUIAODEkErBWf3QguyIaiU5gvSCs8ZaPeKsHkrWHIPswmql4wZqR1hcXBMmTFDrWn+3t956Sx1Lbzecr6urK9D4jo4OX40dUQEAMYMFCADgBAsQAMAJFiAAgBNDKoRg3XBPSEjw1ayb8FYgIMimdlYIYeTIkWrdugFotcvRzjNoqEC7iWjNxZqf9ZzQ5mfwnDt3Tq1rm8kRNkBvWRsdWrTv1HHjxqljw+Fwn+YkwhUQAMARFiAAgBMsQAAAJ1iAAABOsAABAJwYUim4IKykltUux2rzo23MZAmSpBMJtgmeNdZinaeW4LNScNa5k44bPK+//rrrKSDKWJ+3xMREX01Lr4mIJCcnq3UrLat9lrXf119cAQEAnGABAgA4wQIEAHCCBQgA4ETgBej48ePyjW98Q9LT0yUpKUmuueYa2bNnT+TnnufJgw8+KNnZ2ZKUlCRFRUVy8ODBAZ00AGDoC5SCO3PmjMyfP1+++MUvyiuvvCLjxo2TgwcPyujRoyNjHnvsMXnyySfl+eefl/z8fHnggQdk0aJFsn//frNXWm9ZiQ0tJWIlu6xNlazUmJUq0VhJNWsuVl+6s2fP9vsYQcYHTdhZvfAs2lyCbrBnsZJ32vGtsUF79fX2912obr1uwPkGInUaNOmqfQclJSX1+vf1VqBvkp/+9KeSm5sr69evj9Ty8/Mj/9vzPFm7dq384Ac/kCVLloiIyAsvvCCZmZny0ksvyde+9rUBmjYAYKgL9H83f/e738ns2bPlq1/9qmRkZMh1110nzz77bOTnR48elfr6eikqKorUQqGQzJs3T3bs2KEes729XZqbm3s8AACxL9ACdOTIEVm3bp1MnjxZtm7dKvfcc4985zvfkeeff15EROrr60VEJDMzs8e/l5mZGfnZ+UpKSiQUCkUeubm5fTkPAMAQE2gB6u7uluuvv14eeeQRue666+Suu+6Sb3/72/L000/3eQJr1qyRcDgcedTU1PT5WACAoSPQApSdnS3Tpk3rUZs6dapUV1eLiEhWVpaIiDQ0NPQY09DQEPnZ+RITEyU1NbXHAwAQ+wKFEObPny9VVVU9agcOHJCJEyeKyMeBhKysLCkvL5drr71WRESam5tl165dcs899/R7stbV0cmTJ3211tZWdayVsrISdlrd2rXyww8/DFS3kndaWnDUqFHqWCtNFaRu7bZqpRat8VY6TkseWmlEK/FjPVfWcbS69doHTbAFSepZz4l1DOu51XoVWskm63WzdsVMSUnp9fys18Fi3dPVztPqx2g9hwcOHFDrLS0tvZzd0GB9lrUEm/X+sdJuVj09Pd1Xy8jIUMdar0NvBFqAVq1aJZ/73OfkkUcekb/7u7+TN954Q5555hl55plnROTjD+zKlSvlxz/+sUyePDkSw87JyZHbbrutz5MEAMSeQAvQnDlzZPPmzbJmzRp5+OGHJT8/X9auXSt33HFHZMx3v/tdaWtrk7vuukuamprkxhtvlC1btvT7b4AAALEl8HYMX/nKV+QrX/mK+fO4uDh5+OGH5eGHH+7XxAAAsY1ecAAAJ4bUhnRWQk67uardWBWxb6JaN+O0dhdB2+JYN3Stm6vaxk/WZlDWMYLc/LZaelg3+C1W2yKtHvTmvCXIa2GdpxVYscIj2nvFeq6Ctvmx6trzYm0yFrRVknbj2jp36wa/9bm64oor1HooFPLVrBCCVV+4cKFa157zpqYmdeyJEyfUuhVKCtLiy3pfBf0OsuracYKEckT8ieVP5OTk+Grjx49Xx/ZnE0WugAAATrAAAQCcYAECADjBAgQAcIIFCADgxJBKwS1btkyta8mh06dPq2ODthjR2rGcOXNGHau1BBIRCYfDar2urk6tnzp1ylezUjxWl3Hr/NkIDcBnOb/l2mDhCggA4AQLEADACRYgAIATLEAAACeiLoRgtSIRsfcW0dqGWHv2WHu8WPtoaOOtY1stM6y2HlaLEW0uQdv/XOh5BICL4bO+h6JuAbrQZlLWrqoAgOjT0tKi9v37RJwXZf9Xubu7W2prayUlJUVaWlokNzdXampqYnqr7ubmZs4zRlwK5yjCecaagT5Pz/OkpaVFcnJyLthgOOqugOLj42XChAki8v//81dqampMv/if4Dxjx6VwjiKcZ6wZyPO80JXPJwghAACcYAECADgR1QtQYmKiPPTQQ+ZmbLGC84wdl8I5inCescbVeUZdCAEAcGmI6isgAEDsYgECADjBAgQAcIIFCADgBAsQAMCJqF6ASktL5fLLL5eRI0fKvHnz5I033nA9pX7Zvn273HrrrZKTkyNxcXHy0ksv9fi553ny4IMPSnZ2tiQlJUlRUZEcPHjQzWT7qKSkRObMmSMpKSmSkZEht912m293xXPnzklxcbGkp6dLcnKyLFu2TBoaGhzNuG/WrVsnM2bMiPzleGFhobzyyiuRn8fCOZ7v0Ucflbi4OFm5cmWkFgvn+cMf/lDi4uJ6PAoKCiI/j4Vz/MTx48flG9/4hqSnp0tSUpJcc801smfPnsjPL/Z3UNQuQP/5n/8pq1evloceekjefPNNmTlzpixatEgaGxtdT63P2traZObMmVJaWqr+/LHHHpMnn3xSnn76adm1a5eMGjVKFi1aZHbfjkYVFRVSXFwsO3fulFdffVU6Ozvllltukba2tsiYVatWycsvvyybNm2SiooKqa2tlaVLlzqcdXATJkyQRx99VCorK2XPnj2yYMECWbJkiezbt09EYuMcP2337t3yy1/+UmbMmNGjHivnOX36dKmrq4s8Xn/99cjPYuUcz5w5I/Pnz5cRI0bIK6+8Ivv375d/+Zd/kdGjR0fGXPTvIC9KzZ071ysuLo78c1dXl5eTk+OVlJQ4nNXAERFv8+bNkX/u7u72srKyvMcffzxSa2pq8hITE73/+I//cDDDgdHY2OiJiFdRUeF53sfnNGLECG/Tpk2RMX/96189EfF27NjhapoDYvTo0d6//du/xdw5trS0eJMnT/ZeffVV7wtf+IJ33333eZ4XO6/lQw895M2cOVP9Wayco+d53ve+9z3vxhtvNH/u4jsoKq+AOjo6pLKyUoqKiiK1+Ph4KSoqkh07djic2eA5evSo1NfX9zjnUCgk8+bNG9LnHA6HRURkzJgxIiJSWVkpnZ2dPc6zoKBA8vLyhux5dnV1SVlZmbS1tUlhYWHMnWNxcbF8+ctf7nE+IrH1Wh48eFBycnJk0qRJcscdd0h1dbWIxNY5/u53v5PZs2fLV7/6VcnIyJDrrrtOnn322cjPXXwHReUCdPLkSenq6pLMzMwe9czMTKmvr3c0q8H1yXnF0jl3d3fLypUrZf78+XL11VeLyMfnmZCQIGlpaT3GDsXzfPfddyU5OVkSExPl7rvvls2bN8u0adNi6hzLysrkzTfflJKSEt/PYuU8582bJxs2bJAtW7bIunXr5OjRo/L5z39eWlpaYuYcRUSOHDki69atk8mTJ8vWrVvlnnvuke985zvy/PPPi4ib76Co244BsaO4uFj27t3b47+nx5IpU6bI22+/LeFwWH7zm9/I8uXLpaKiwvW0BkxNTY3cd9998uqrr8rIkSNdT2fQLF68OPK/Z8yYIfPmzZOJEyfKiy++KElJSQ5nNrC6u7tl9uzZ8sgjj4iIyHXXXSd79+6Vp59+WpYvX+5kTlF5BTR27FgZNmyYL2nS0NAQs7uifnJesXLO9957r/z+97+XP/3pT5H9nUQ+Ps+Ojg5pamrqMX4onmdCQoJceeWVMmvWLCkpKZGZM2fKz3/+85g5x8rKSmlsbJTrr79ehg8fLsOHD5eKigp58sknZfjw4ZKZmRkT53m+tLQ0ueqqq+TQoUMx81qKiGRnZ8u0adN61KZOnRr5z40uvoOicgFKSEiQWbNmSXl5eaTW3d0t5eXlUlhY6HBmgyc/P1+ysrJ6nHNzc7Ps2rVrSJ2z53ly7733yubNm+W1116T/Pz8Hj+fNWuWjBgxosd5VlVVSXV19ZA6T013d7e0t7fHzDkuXLhQ3n33XXn77bcjj9mzZ8sdd9wR+d+xcJ7na21tlcOHD0t2dnbMvJYiIvPnz/f9ScSBAwdk4sSJIuLoO2hQog0DoKyszEtMTPQ2bNjg7d+/37vrrru8tLQ0r76+3vXU+qylpcV76623vLfeessTEe9nP/uZ99Zbb3kffPCB53me9+ijj3ppaWneb3/7W++dd97xlixZ4uXn53sffvih45n33j333OOFQiFv27ZtXl1dXeRx9uzZyJi7777by8vL81577TVvz549XmFhoVdYWOhw1sF9//vf9yoqKryjR49677zzjvf973/fi4uL8/74xz96nhcb56j5dArO82LjPO+//35v27Zt3tGjR72//OUvXlFRkTd27FivsbHR87zYOEfP87w33njDGz58uPeTn/zEO3jwoPfrX//au+yyy7x///d/j4y52N9BUbsAeZ7n/eIXv/Dy8vK8hIQEb+7cud7OnTtdT6lf/vSnP3ki4nssX77c87yPY5APPPCAl5mZ6SUmJnoLFy70qqqq3E46IO38RMRbv359ZMyHH37o/eM//qM3evRo77LLLvP+9m//1qurq3M36T74h3/4B2/ixIleQkKCN27cOG/hwoWRxcfzYuMcNecvQLFwnrfffruXnZ3tJSQkeOPHj/duv/1279ChQ5Gfx8I5fuLll1/2rr76ai8xMdErKCjwnnnmmR4/v9jfQewHBABwIirvAQEAYh8LEADACRYgAIATLEAAACdYgAAATrAAAQCcYAECADjBAgQAcIIFCADgBAsQAMAJFiAAgBP/D03fLe+0+1GBAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import sys\n",
    "\n",
    "sys.path.append(bundle_root)  # make sure we load the script files we need\n",
    "\n",
    "# configure the parser from the bundle's information\n",
    "cp = ConfigParser()\n",
    "cp.read_meta(f\"{bundle_root}/configs/metadata.json\")\n",
    "cp.read_config([f\"{bundle_root}/configs/inference.yaml\"])\n",
    "cp[\"bundle_root\"] = bundle_root\n",
    "cp[\"ckpt_path\"] = f\"./outputs/model_final_iteration=75000.pt\"\n",
    "\n",
    "cp.get_parsed_content(\"load_state\")  # load the saved state from the checkpoint just be resolving this value\n",
    "\n",
    "device = cp.get_parsed_content(\"device\")  # device used by the bundle\n",
    "sample = cp.get_parsed_content(\"sample\")  # test sampling function\n",
    "\n",
    "image_dim = cp[\"image_dim\"]  # get the stored dimension value, no need to resolve anything\n",
    "\n",
    "noise = torch.rand(1, 1, image_dim, image_dim).to(device)  # or cp.get_parsed_content(\"noise\")\n",
    "\n",
    "test = sample(noise)\n",
    "\n",
    "plt.imshow(test[0, 0].cpu(), vmin=0.75, vmax=1, cmap=\"gray\") # Toggle vmin for more contrast"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2feab4e5-2745-4d35-9eec-a2bb8340cf51",
   "metadata": {},
   "source": [
    "Multi-GPU can be enabled by including the `train_multigpu.yaml` configuration file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "173cda1c-ac90-410f-b34d-b6cbb0044c7a",
   "metadata": {},
   "outputs": [],
   "source": [
    "configs=f\"'{bundle_root}/configs/train.yaml', '{bundle_root}/configs/train_multigpu.yaml'\"\n",
    "\n",
    "!PYTHONPATH={bundle_root} torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training \\\n",
    "    --meta_file {bundle_root}/configs/metadata.json \\\n",
    "    --config_file \"{configs}\" \\\n",
    "    --logging_file {bundle_root}/configs/logging.conf \\\n",
    "    --bundle_root {bundle_root} \\\n",
    "    --dataset_dir {dataset_dir}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cb719023-8250-43c4-ab10-911829332498",
   "metadata": {},
   "outputs": [],
   "source": [
    "if directory is None:\n",
    "    shutil.rmtree(dataset_dir)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}