project-monai commited on
Commit
7445207
·
verified ·
1 Parent(s): 22a3b73

Upload pathology_nuclei_segmentation_classification version 0.2.8

Browse files
Files changed (1) hide show
  1. configs/metadata.json +6 -5
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json",
3
- "version": "0.2.7",
4
  "changelog": {
 
5
  "0.2.7": "update to huggingface hosting",
6
  "0.2.6": "update tensorrt benchmark results",
7
  "0.2.5": "enable tensorrt",
@@ -34,12 +35,12 @@
34
  "tensorboard": "2.17.0",
35
  "nibabel": "5.2.1"
36
  },
37
- "name": "Nuclear segmentation and classification",
38
- "task": "Nuclear segmentation and classification",
39
- "description": "A simultaneous segmentation and classification of nuclei within multitissue histology images based on CoNSeP data",
40
  "authors": "MONAI team",
41
  "copyright": "Copyright (c) MONAI Consortium",
42
- "data_source": "https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/",
43
  "data_type": "numpy",
44
  "image_classes": "RGB image with intensity between 0 and 255",
45
  "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json",
3
+ "version": "0.2.8",
4
  "changelog": {
5
+ "0.2.8": "enhance metadata with improved descriptions",
6
  "0.2.7": "update to huggingface hosting",
7
  "0.2.6": "update tensorrt benchmark results",
8
  "0.2.5": "enable tensorrt",
 
35
  "tensorboard": "2.17.0",
36
  "nibabel": "5.2.1"
37
  },
38
+ "name": "HoVer-Net: Nuclear Segmentation and Classification",
39
+ "task": "Multi-task Nuclear Segmentation and Classification in H&E Histology",
40
+ "description": "A multi-task learning model based on the HoVer-Net architecture that simultaneously performs nuclei segmentation and type classification in H&E-stained histology images. The model processes 256x256 pixel RGB patches and outputs three complementary predictions: binary nuclear segmentation (Dice score: 0.83), hover maps for instance separation, and pixel-level nuclear type classification.",
41
  "authors": "MONAI team",
42
  "copyright": "Copyright (c) MONAI Consortium",
43
+ "data_source": "CoNSeP Dataset from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/",
44
  "data_type": "numpy",
45
  "image_classes": "RGB image with intensity between 0 and 255",
46
  "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification",