project-monai commited on
Commit
3ceb398
·
verified ·
1 Parent(s): 53887c9

Upload pathology_tumor_detection version 0.6.3

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training.csv filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
configs/inference.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os"
5
+ ],
6
+ "bundle_root": ".",
7
+ "output_dir": "$os.path.join(@bundle_root, 'eval')",
8
+ "dataset_dir": "/workspace/data/medical/pathology",
9
+ "testing_file": "$os.path.join(@bundle_root, 'testing.csv')",
10
+ "wsi_reader": "cuCIM",
11
+ "patch_size": [
12
+ 224,
13
+ 224
14
+ ],
15
+ "number_intensity_ch": 3,
16
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
17
+ "network_def": {
18
+ "_target_": "TorchVisionFCModel",
19
+ "model_name": "resnet18",
20
+ "num_classes": 1,
21
+ "use_conv": true,
22
+ "pretrained": true
23
+ },
24
+ "network": "$@network_def.to(@device)",
25
+ "preprocessing": {
26
+ "_target_": "Compose",
27
+ "transforms": [
28
+ {
29
+ "_target_": "CastToTyped",
30
+ "keys": "image",
31
+ "dtype": "float32"
32
+ },
33
+ {
34
+ "_target_": "ScaleIntensityRanged",
35
+ "keys": "image",
36
+ "a_min": 0.0,
37
+ "a_max": 255.0,
38
+ "b_min": -1.0,
39
+ "b_max": 1.0
40
+ },
41
+ {
42
+ "_target_": "ToTensord",
43
+ "keys": "image"
44
+ }
45
+ ]
46
+ },
47
+ "datalist": {
48
+ "_target_": "CSVDataset",
49
+ "src": "@testing_file",
50
+ "kwargs_read_csv": {
51
+ "names": [
52
+ "image"
53
+ ],
54
+ "header": null
55
+ },
56
+ "transform": {
57
+ "_target_": "Lambdad",
58
+ "keys": "image",
59
+ "func": "$lambda x: os.path.join(@dataset_dir, 'testing/images', x + '.tif')"
60
+ }
61
+ },
62
+ "dataset": {
63
+ "_target_": "MaskedPatchWSIDataset",
64
+ "data": "@datalist",
65
+ "mask_level": 6,
66
+ "patch_size": "@patch_size",
67
+ "transform": "@preprocessing",
68
+ "reader": "@wsi_reader"
69
+ },
70
+ "dataloader": {
71
+ "_target_": "DataLoader",
72
+ "dataset": "@dataset",
73
+ "batch_size": 400,
74
+ "shuffle": false,
75
+ "num_workers": 8
76
+ },
77
+ "inferer": {
78
+ "_target_": "SimpleInferer"
79
+ },
80
+ "postprocessing": {
81
+ "_target_": "Compose",
82
+ "transforms": [
83
+ {
84
+ "_target_": "EnsureTyped",
85
+ "keys": "pred"
86
+ },
87
+ {
88
+ "_target_": "Activationsd",
89
+ "keys": "pred",
90
+ "sigmoid": true
91
+ },
92
+ {
93
+ "_target_": "ToNumpyd",
94
+ "keys": "pred"
95
+ }
96
+ ]
97
+ },
98
+ "handlers": [
99
+ {
100
+ "_target_": "CheckpointLoader",
101
+ "load_path": "$@bundle_root + '/models/model.pt'",
102
+ "load_dict": {
103
+ "model": "@network"
104
+ }
105
+ },
106
+ {
107
+ "_target_": "StatsHandler",
108
+ "tag_name": "progress",
109
+ "iteration_print_logger": "$lambda engine: print(f'image: \"{engine.state.batch[\"image\"].meta[\"name\"][0]}\", iter: {engine.state.iteration}/{engine.state.epoch_length}') if engine.state.iteration % 100 == 0 else None",
110
+ "output_transform": "$lambda x: None"
111
+ },
112
+ {
113
+ "_target_": "monai.handlers.ProbMapProducer",
114
+ "output_dir": "@output_dir"
115
+ }
116
+ ],
117
+ "evaluator": {
118
+ "_target_": "SupervisedEvaluator",
119
+ "device": "@device",
120
+ "val_data_loader": "@dataloader",
121
+ "network": "@network",
122
+ "inferer": "@inferer",
123
+ "postprocessing": "@postprocessing",
124
+ "val_handlers": "@handlers",
125
+ "amp": true,
126
+ "decollate": false
127
+ },
128
+ "run": [
129
130
+ ]
131
+ }
configs/inference_trt.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os",
5
+ "$import torch_tensorrt"
6
+ ],
7
+ "handlers#0#_disabled_": true,
8
+ "network_def": "$torch.jit.load(@bundle_root + '/models/model_trt.ts')",
9
+ "evaluator#amp": false
10
+ }
configs/logging.conf ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [loggers]
2
+ keys=root
3
+
4
+ [handlers]
5
+ keys=consoleHandler
6
+
7
+ [formatters]
8
+ keys=fullFormatter
9
+
10
+ [logger_root]
11
+ level=INFO
12
+ handlers=consoleHandler
13
+
14
+ [handler_consoleHandler]
15
+ class=StreamHandler
16
+ level=INFO
17
+ formatter=fullFormatter
18
+ args=(sys.stdout,)
19
+
20
+ [formatter_fullFormatter]
21
+ format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
configs/metadata.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
+ "version": "0.6.3",
4
+ "changelog": {
5
+ "0.6.3": "update to huggingface hosting",
6
+ "0.6.2": "enhance readme for nccl timout issue",
7
+ "0.6.1": "fix multi-gpu issue",
8
+ "0.6.0": "use monai 1.4 and update large files",
9
+ "0.5.9": "update to use monai 1.3.1",
10
+ "0.5.8": "update readme to add memory warning",
11
+ "0.5.7": "update channel_def in metadata",
12
+ "0.5.6": "fix the wrong GPU index issue of multi-node",
13
+ "0.5.5": "modify mgpu logging level",
14
+ "0.5.4": "retrain using an internal pretrained ResNet18",
15
+ "0.5.3": "make the training bundle deterministic",
16
+ "0.5.2": "update TensorRT descriptions",
17
+ "0.5.1": "update the TensorRT part in the README file",
18
+ "0.5.0": "add the command of executing inference with TensorRT models",
19
+ "0.4.9": "adapt to BundleWorkflow interface",
20
+ "0.4.8": "update the readme file with TensorRT convert",
21
+ "0.4.7": "add name tag",
22
+ "0.4.6": "modify dataset key name",
23
+ "0.4.5": "update model weights and perfomance metrics",
24
+ "0.4.4": "restructure readme to match updated template",
25
+ "0.4.3": "fix wrong figure url",
26
+ "0.4.2": "update metadata with new metrics",
27
+ "0.4.1": "Fix inference print logger and froc",
28
+ "0.4.0": "add lesion FROC calculation and wsi_reader",
29
+ "0.3.3": "update to use monai 1.0.1",
30
+ "0.3.2": "enhance readme on commands example",
31
+ "0.3.1": "fix license Copyright error",
32
+ "0.3.0": "update license files",
33
+ "0.2.0": "unify naming",
34
+ "0.1.1": "fix location variable name change",
35
+ "0.1.0": "initialize release of the bundle"
36
+ },
37
+ "monai_version": "1.4.0",
38
+ "pytorch_version": "2.4.0",
39
+ "numpy_version": "1.24.4",
40
+ "required_packages_version": {
41
+ "cucim-cu12": "24.6.0",
42
+ "pandas": "2.2.1",
43
+ "torchvision": "0.19.0",
44
+ "pytorch-ignite": "0.4.11",
45
+ "tensorboard": "2.17.0"
46
+ },
47
+ "supported_apps": {},
48
+ "name": "Pathology tumor detection",
49
+ "task": "Pathology metastasis detection",
50
+ "description": "A pre-trained model for metastasis detection on Camelyon 16 dataset.",
51
+ "authors": "MONAI team",
52
+ "copyright": "Copyright (c) MONAI Consortium",
53
+ "data_source": "Camelyon dataset",
54
+ "data_type": "tiff",
55
+ "image_classes": "RGB image with intensity between 0 and 255",
56
+ "label_classes": "binary labels for each patch",
57
+ "pred_classes": "scalar probability",
58
+ "eval_metrics": {
59
+ "accuracy": 0.9,
60
+ "froc": 0.72
61
+ },
62
+ "intended_use": "This is an example, not to be used for diagnostic purposes",
63
+ "references": [
64
+ ""
65
+ ],
66
+ "network_data_format": {
67
+ "inputs": {
68
+ "image": {
69
+ "type": "image",
70
+ "format": "magnitude",
71
+ "num_channels": 3,
72
+ "spatial_shape": [
73
+ 224,
74
+ 224
75
+ ],
76
+ "dtype": "float32",
77
+ "value_range": [
78
+ 0,
79
+ 255
80
+ ],
81
+ "is_patch_data": true,
82
+ "channel_def": {
83
+ "0": "R",
84
+ "1": "G",
85
+ "2": "B"
86
+ }
87
+ }
88
+ },
89
+ "outputs": {
90
+ "pred": {
91
+ "type": "probability",
92
+ "format": "classification",
93
+ "num_channels": 1,
94
+ "spatial_shape": [
95
+ 1,
96
+ 1
97
+ ],
98
+ "dtype": "float32",
99
+ "is_patch_data": true,
100
+ "value_range": [
101
+ 0,
102
+ 1
103
+ ],
104
+ "channel_def": {
105
+ "0": "metastasis"
106
+ }
107
+ }
108
+ }
109
+ }
110
+ }
configs/multi_gpu_train.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "device": "$torch.device('cuda:' + os.environ['LOCAL_RANK'])",
3
+ "network": {
4
+ "_target_": "torch.nn.parallel.DistributedDataParallel",
5
+ "module": "$@network_def.to(@device)",
6
+ "device_ids": [
7
+ "@device"
8
+ ]
9
+ },
10
+ "train#sampler": {
11
+ "_target_": "DistributedSampler",
12
+ "dataset": "@train#dataset",
13
+ "even_divisible": true,
14
+ "shuffle": true
15
+ },
16
+ "train#dataloader#sampler": "@train#sampler",
17
+ "train#dataloader#shuffle": false,
18
+ "train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
19
+ "validate#sampler": {
20
+ "_target_": "DistributedSampler",
21
+ "dataset": "@validate#dataset",
22
+ "even_divisible": false,
23
+ "shuffle": false
24
+ },
25
+ "validate#dataloader#sampler": "@validate#sampler",
26
+ "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
+ "initialize": [
28
+ "$import torch.distributed as dist",
29
+ "$dist.is_initialized() or dist.init_process_group(backend='nccl')",
30
+ "$torch.cuda.set_device(@device)",
31
+ "$monai.utils.set_determinism(seed=123)",
32
+ "$import logging",
33
+ "$@train#trainer.logger.setLevel(logging.WARNING if dist.get_rank() > 0 else logging.INFO)",
34
+ "$@validate#evaluator.logger.setLevel(logging.WARNING if dist.get_rank() > 0 else logging.INFO)"
35
+ ],
36
+ "run": [
37
+ "$@train#trainer.run()"
38
+ ],
39
+ "finalize": [
40
+ "$dist.destroy_process_group()"
41
+ ]
42
+ }
configs/train.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import os",
4
+ "$import ignite"
5
+ ],
6
+ "lr": 0.001,
7
+ "num_epochs": 4,
8
+ "val_interval": 1,
9
+ "bundle_root": ".",
10
+ "ckpt_dir": "$os.path.join(@bundle_root, 'models')",
11
+ "output_dir": "$os.path.join(@bundle_root, 'log')",
12
+ "training_file": "$os.path.join(@bundle_root, 'training.csv')",
13
+ "validation_file": "$os.path.join(@bundle_root, 'validation.csv')",
14
+ "dataset_dir": "/workspace/data/medical/pathology",
15
+ "wsi_reader": "cuCIM",
16
+ "region_size": [
17
+ 768,
18
+ 768
19
+ ],
20
+ "patch_size": [
21
+ 224,
22
+ 224
23
+ ],
24
+ "grid_shape": [
25
+ 3,
26
+ 3
27
+ ],
28
+ "number_intensity_ch": 3,
29
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
30
+ "network_def": {
31
+ "_target_": "TorchVisionFCModel",
32
+ "model_name": "resnet18",
33
+ "num_classes": 1,
34
+ "use_conv": true,
35
+ "pretrained": false
36
+ },
37
+ "network": "$@network_def.to(@device)",
38
+ "loss": {
39
+ "_target_": "torch.nn.BCEWithLogitsLoss"
40
+ },
41
+ "optimizer": {
42
+ "_target_": "Novograd",
43
+ "params": "[email protected]()",
44
+ "lr": "@lr"
45
+ },
46
+ "lr_scheduler": {
47
+ "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
48
+ "optimizer": "@optimizer",
49
+ "T_max": "@num_epochs"
50
+ },
51
+ "train": {
52
+ "preprocessing": {
53
+ "_target_": "Compose",
54
+ "transforms": [
55
+ {
56
+ "_target_": "Lambdad",
57
+ "keys": [
58
+ "label"
59
+ ],
60
+ "func": "$lambda x: x.reshape((1, *@grid_shape))"
61
+ },
62
+ {
63
+ "_target_": "GridSplitd",
64
+ "keys": [
65
+ "image",
66
+ "label"
67
+ ],
68
+ "grid": "@grid_shape",
69
+ "size": {
70
+ "image": "@patch_size",
71
+ "label": 1
72
+ }
73
+ },
74
+ {
75
+ "_target_": "ToTensord",
76
+ "keys": "image"
77
+ },
78
+ {
79
+ "_target_": "TorchVisiond",
80
+ "keys": "image",
81
+ "name": "ColorJitter",
82
+ "brightness": 0.25,
83
+ "contrast": 0.75,
84
+ "saturation": 0.25,
85
+ "hue": 0.04
86
+ },
87
+ {
88
+ "_target_": "ToNumpyd",
89
+ "keys": "image"
90
+ },
91
+ {
92
+ "_target_": "RandFlipd",
93
+ "keys": "image",
94
+ "prob": 0.5
95
+ },
96
+ {
97
+ "_target_": "RandRotate90d",
98
+ "keys": "image",
99
+ "prob": 0.5,
100
+ "max_k": 3,
101
+ "spatial_axes": [
102
+ -2,
103
+ -1
104
+ ]
105
+ },
106
+ {
107
+ "_target_": "CastToTyped",
108
+ "keys": "image",
109
+ "dtype": "float32"
110
+ },
111
+ {
112
+ "_target_": "RandZoomd",
113
+ "keys": "image",
114
+ "prob": 0.5,
115
+ "min_zoom": 0.9,
116
+ "max_zoom": 1.1
117
+ },
118
+ {
119
+ "_target_": "ScaleIntensityRanged",
120
+ "keys": "image",
121
+ "a_min": 0.0,
122
+ "a_max": 255.0,
123
+ "b_min": -1.0,
124
+ "b_max": 1.0
125
+ },
126
+ {
127
+ "_target_": "ToTensord",
128
+ "keys": [
129
+ "image",
130
+ "label"
131
+ ]
132
+ }
133
+ ]
134
+ },
135
+ "datalist": {
136
+ "_target_": "CSVDataset",
137
+ "src": "@training_file",
138
+ "col_groups": {
139
+ "image": 0,
140
+ "location": [
141
+ 2,
142
+ 1
143
+ ],
144
+ "label": [
145
+ 3,
146
+ 6,
147
+ 9,
148
+ 4,
149
+ 7,
150
+ 10,
151
+ 5,
152
+ 8,
153
+ 11
154
+ ]
155
+ },
156
+ "kwargs_read_csv": {
157
+ "header": null
158
+ },
159
+ "transform": {
160
+ "_target_": "Lambdad",
161
+ "keys": "image",
162
+ "func": "$lambda x: os.path.join(@dataset_dir, 'training/images', x + '.tif')"
163
+ }
164
+ },
165
+ "dataset": {
166
+ "_target_": "monai.data.wsi_datasets.PatchWSIDataset",
167
+ "data": "@train#datalist",
168
+ "patch_level": 0,
169
+ "patch_size": "@region_size",
170
+ "reader": "@wsi_reader",
171
+ "transform": "@train#preprocessing"
172
+ },
173
+ "dataloader": {
174
+ "_target_": "DataLoader",
175
+ "dataset": "@train#dataset",
176
+ "batch_size": 128,
177
+ "pin_memory": false,
178
+ "num_workers": 8
179
+ },
180
+ "inferer": {
181
+ "_target_": "SimpleInferer"
182
+ },
183
+ "postprocessing": {
184
+ "_target_": "Compose",
185
+ "transforms": [
186
+ {
187
+ "_target_": "Activationsd",
188
+ "keys": "pred",
189
+ "sigmoid": true
190
+ },
191
+ {
192
+ "_target_": "AsDiscreted",
193
+ "keys": "pred",
194
+ "threshold": 0.5
195
+ }
196
+ ]
197
+ },
198
+ "handlers": [
199
+ {
200
+ "_target_": "LrScheduleHandler",
201
+ "lr_scheduler": "@lr_scheduler",
202
+ "print_lr": true
203
+ },
204
+ {
205
+ "_target_": "ValidationHandler",
206
+ "validator": "@validate#evaluator",
207
+ "epoch_level": true,
208
+ "interval": "@val_interval"
209
+ },
210
+ {
211
+ "_target_": "StatsHandler",
212
+ "tag_name": "train_loss",
213
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
214
+ },
215
+ {
216
+ "_target_": "TensorBoardStatsHandler",
217
+ "log_dir": "@output_dir",
218
+ "tag_name": "train_loss",
219
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
220
+ }
221
+ ],
222
+ "key_metric": {
223
+ "train_acc": {
224
+ "_target_": "ignite.metrics.Accuracy",
225
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
226
+ }
227
+ },
228
+ "trainer": {
229
+ "_target_": "SupervisedTrainer",
230
+ "device": "@device",
231
+ "max_epochs": "@num_epochs",
232
+ "train_data_loader": "@train#dataloader",
233
+ "network": "@network",
234
+ "optimizer": "@optimizer",
235
+ "loss_function": "@loss",
236
+ "inferer": "@train#inferer",
237
+ "amp": true,
238
+ "postprocessing": "@train#postprocessing",
239
+ "key_train_metric": "@train#key_metric",
240
+ "train_handlers": "@train#handlers"
241
+ }
242
+ },
243
+ "validate": {
244
+ "preprocessing": {
245
+ "_target_": "Compose",
246
+ "transforms": [
247
+ {
248
+ "_target_": "Lambdad",
249
+ "keys": "label",
250
+ "func": "$lambda x: x.reshape((1, *@grid_shape))"
251
+ },
252
+ {
253
+ "_target_": "GridSplitd",
254
+ "keys": [
255
+ "image",
256
+ "label"
257
+ ],
258
+ "grid": "@grid_shape",
259
+ "size": {
260
+ "image": "@patch_size",
261
+ "label": 1
262
+ }
263
+ },
264
+ {
265
+ "_target_": "CastToTyped",
266
+ "keys": "image",
267
+ "dtype": "float32"
268
+ },
269
+ {
270
+ "_target_": "ScaleIntensityRanged",
271
+ "keys": "image",
272
+ "a_min": 0.0,
273
+ "a_max": 255.0,
274
+ "b_min": -1.0,
275
+ "b_max": 1.0
276
+ },
277
+ {
278
+ "_target_": "ToTensord",
279
+ "keys": [
280
+ "image",
281
+ "label"
282
+ ]
283
+ }
284
+ ]
285
+ },
286
+ "datalist": {
287
+ "_target_": "CSVDataset",
288
+ "src": "@validation_file",
289
+ "col_groups": {
290
+ "image": 0,
291
+ "location": [
292
+ 2,
293
+ 1
294
+ ],
295
+ "label": [
296
+ 3,
297
+ 6,
298
+ 9,
299
+ 4,
300
+ 7,
301
+ 10,
302
+ 5,
303
+ 8,
304
+ 11
305
+ ]
306
+ },
307
+ "kwargs_read_csv": {
308
+ "header": null
309
+ },
310
+ "transform": {
311
+ "_target_": "Lambdad",
312
+ "keys": "image",
313
+ "func": "$lambda x: os.path.join(@dataset_dir, 'training/images', x + '.tif')"
314
+ }
315
+ },
316
+ "dataset": {
317
+ "_target_": "monai.data.wsi_datasets.PatchWSIDataset",
318
+ "data": "@validate#datalist",
319
+ "patch_level": 0,
320
+ "patch_size": "@region_size",
321
+ "reader": "@wsi_reader",
322
+ "transform": "@validate#preprocessing"
323
+ },
324
+ "dataloader": {
325
+ "_target_": "DataLoader",
326
+ "dataset": "@validate#dataset",
327
+ "batch_size": 128,
328
+ "pin_memory": false,
329
+ "shuffle": false,
330
+ "num_workers": 8
331
+ },
332
+ "inferer": {
333
+ "_target_": "SimpleInferer"
334
+ },
335
+ "postprocessing": "%train#postprocessing",
336
+ "handlers": [
337
+ {
338
+ "_target_": "StatsHandler",
339
+ "iteration_log": false
340
+ },
341
+ {
342
+ "_target_": "TensorBoardStatsHandler",
343
+ "log_dir": "@output_dir",
344
+ "iteration_log": false
345
+ },
346
+ {
347
+ "_target_": "CheckpointSaver",
348
+ "save_dir": "@ckpt_dir",
349
+ "save_dict": {
350
+ "model": "@network"
351
+ },
352
+ "save_key_metric": true,
353
+ "key_metric_filename": "model.pt"
354
+ }
355
+ ],
356
+ "key_metric": {
357
+ "valid_acc": {
358
+ "_target_": "ignite.metrics.Accuracy",
359
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
360
+ }
361
+ },
362
+ "evaluator": {
363
+ "_target_": "SupervisedEvaluator",
364
+ "device": "@device",
365
+ "val_data_loader": "@validate#dataloader",
366
+ "network": "@network",
367
+ "inferer": "@validate#inferer",
368
+ "postprocessing": "@validate#postprocessing",
369
+ "key_val_metric": "@validate#key_metric",
370
+ "val_handlers": "@validate#handlers",
371
+ "amp": true
372
+ }
373
+ },
374
+ "initialize": [
375
+ "$monai.utils.set_determinism(seed=15)"
376
+ ],
377
+ "run": [
378
+ "$@train#trainer.run()"
379
+ ]
380
+ }
docs/README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Overview
2
+
3
+ A pre-trained model for automated detection of metastases in whole-slide histopathology images.
4
+
5
+ The model is trained based on ResNet18 [1] with the last fully connected layer replaced by a 1x1 convolution layer.
6
+ ![Diagram showing the flow from model input, through the model architecture, and to model output](http://developer.download.nvidia.com/assets/Clara/Images/clara_pt_pathology_metastasis_detection_workflow.png)
7
+
8
+ ## Data
9
+
10
+ All the data used to train, validate, and test this model is from [Camelyon-16 Challenge](https://camelyon16.grand-challenge.org/). You can download all the images for "CAMELYON16" data set from various sources listed [here](https://camelyon17.grand-challenge.org/Data/).
11
+
12
+ Location information for training/validation patches (the location on the whole slide image where patches are extracted) are adopted from [NCRF/coords](https://github.com/baidu-research/NCRF/tree/master/coords).
13
+
14
+ Annotation information are adopted from [NCRF/jsons](https://github.com/baidu-research/NCRF/tree/master/jsons).
15
+
16
+ - Target: Tumor
17
+ - Task: Detection
18
+ - Modality: Histopathology
19
+ - Size: 270 WSIs for training/validation, 48 WSIs for testing
20
+
21
+ ### Preprocessing
22
+
23
+ This bundle expects the training/validation data (whole slide images) reside in a `{dataset_dir}/training/images`. By default `dataset_dir` is pointing to `/workspace/data/medical/pathology/` You can modify `dataset_dir` in the bundle config files to point to a different directory.
24
+
25
+ To reduce the computation burden during the inference, patches are extracted only where there is tissue and ignoring the background according to a tissue mask. Please also create a directory for prediction output. By default `output_dir` is set to `eval` folder under the bundle root.
26
+
27
+ Please refer to "Annotation" section of [Camelyon challenge](https://camelyon17.grand-challenge.org/Data/) to prepare ground truth images, which are needed for FROC computation. By default, this data set is expected to be at `/workspace/data/medical/pathology/ground_truths`. But it can be modified in `evaluate_froc.sh`.
28
+
29
+ ## Training configuration
30
+
31
+ The training was performed with the following:
32
+
33
+ - Config file: train.config
34
+ - GPU: at least 16 GB of GPU memory.
35
+ - Actual Model Input: 224 x 224 x 3
36
+ - AMP: True
37
+ - Optimizer: Novograd
38
+ - Learning Rate: 1e-3
39
+ - Loss: BCEWithLogitsLoss
40
+ - Whole slide image reader: cuCIM (if running on Windows or Mac, please install `OpenSlide` on your system and change `wsi_reader` to "OpenSlide")
41
+
42
+ ### Pretrained Weights
43
+
44
+ By setting the `"pretrained"` parameter of `TorchVisionFCModel` in the config file to `true`, ImageNet pre-trained weights will be used for training. Please note that these weights are for non-commercial use. Each user is responsible for checking the content of the models/datasets and the applicable licenses and determining if suitable for the intended use. In order to use other pretrained weights, you can use `CheckpointLoader` in train handlers section as the first handler:
45
+
46
+ ```json
47
+ {
48
+ "_target_": "CheckpointLoader",
49
+ "load_path": "$@bundle_root + '/pretrained_resnet18.pth'",
50
+ "strict": false,
51
+ "load_dict": {
52
+ "model_new": "@network"
53
+ }
54
+ }
55
+ ```
56
+
57
+ ### Input
58
+
59
+ The training pipeline is a json file (dataset.json) which includes path to each WSI, the location and the label information for each training patch.
60
+
61
+ ### Output
62
+
63
+ A probability number of the input patch being tumor or normal.
64
+
65
+ ### Memory Consumption Warning
66
+
67
+ If you face memory issues in traning, you can lower the `batch_size` in the configurations to reduce the System RAM requirements.
68
+
69
+ ### Inference on a WSI
70
+
71
+ Inference is performed on WSI in a sliding window manner with specified stride. A foreground mask is needed to specify the region where the inference will be performed on, given that background region which contains no tissue at all can occupy a significant portion of a WSI. Output of the inference pipeline is a probability map of size 1/stride of original WSI size.
72
+
73
+ ### Note on determinism
74
+
75
+ By default this bundle use a deterministic approach to make the results reproducible. However, it comes at a cost of performance loss. Thus if you do not care about reproducibility, you can have a performance gain by replacing `"$monai.utils.set_determinism"` line with `"$setattr(torch.backends.cudnn, 'benchmark', True)"` in initialize section of training configuration (`configs/train.json` and `configs/multi_gpu_train.json` for single GPU and multi-GPU training respectively).
76
+
77
+ ## Performance
78
+
79
+ FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
80
+ Using an internal pretrained weights for ResNet18, this model deterministically achieves the 0.90 accuracy on validation patches, and FROC of 0.72 on the 48 Camelyon testing data that have ground truth annotations available.
81
+
82
+ ![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics_v5.png)
83
+
84
+ The `pathology_tumor_detection` bundle supports acceleration with TensorRT. The table below displays the speedup ratios observed on an A100 80G GPU.
85
+
86
+ Please notice that the benchmark results are tested on one WSI image since the images are too large to benchmark. And the inference time in the end-to-end line stands for one patch of the whole image.
87
+
88
+ | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
89
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
90
+ | model computation |1.93 | 2.52 | 1.61 | 1.33 | 0.77 | 1.20 | 1.45 | 1.89 |
91
+ | end2end |224.97 | 223.50 | 222.65 | 224.03 | 1.01 | 1.01 | 1.00 | 1.00 |
92
+
93
+ Where:
94
+
95
+ - `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
96
+ - `end2end` means run the bundle end-to-end with the TensorRT based model.
97
+ - `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
98
+ - `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
99
+ - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
100
+ - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
101
+
102
+ This result is benchmarked under:
103
+
104
+ - TensorRT: 8.5.3+cuda11.8
105
+ - Torch-TensorRT Version: 1.4.0
106
+ - CPU Architecture: x86-64
107
+ - OS: ubuntu 20.04
108
+ - Python version:3.8.10
109
+ - CUDA version: 12.0
110
+ - GPU models and configuration: A100 80G
111
+
112
+ ## MONAI Bundle Commands
113
+
114
+ In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
115
+
116
+ For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
117
+
118
+ #### Execute training
119
+
120
+ ```
121
+ python -m monai.bundle run --config_file configs/train.json
122
+ ```
123
+
124
+ Please note that if the default dataset path is not modified with the actual path in the bundle config files, you can also override it by using `--dataset_dir`:
125
+
126
+ ```
127
+ python -m monai.bundle run --config_file configs/train.json --dataset_dir <actual dataset path>
128
+ ```
129
+
130
+ #### Override the `train` config to execute multi-GPU training
131
+
132
+ ```
133
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
134
+ ```
135
+
136
+ Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
137
+
138
+ **Note:** When using a container based on [PyTorch 24.0x](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes), you may encounter random NCCL timeout errors. To address this issue, consider the following adjustments:
139
+
140
+ - Reduce the `num_workers`: Decreasing the number of data loader workers can help minimize these errors.
141
+ - Set `pin_memory` to `False`: Disabling pinned memory may reduce the likelihood of timeouts.
142
+ - Switch to the `gloo` backend: As a workaround, you can set the distributed training backend to `gloo` to avoid NCCL-related timeouts.
143
+
144
+ You can implement these settings by adding flags like `--train#dataloader#num_workers 0` or `--train#dataloader#pin_memory false`.
145
+
146
+ #### Execute inference
147
+
148
+ ```
149
+ CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run --config_file configs/inference.json
150
+ ```
151
+
152
+ #### Evaluate FROC metric
153
+
154
+ ```
155
+ cd scripts && source evaluate_froc.sh
156
+ ```
157
+
158
+ #### Export checkpoint to TorchScript file
159
+
160
+ ```
161
+ python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
162
+ ```
163
+
164
+ #### Export checkpoint to TensorRT based models with fp32 or fp16 precision
165
+
166
+ ```
167
+ python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 400, 600]"
168
+ ```
169
+
170
+ #### Execute inference with the TensorRT model
171
+
172
+ ```
173
+ python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
174
+ ```
175
+
176
+ # References
177
+
178
+ [1] He, Kaiming, et al, "Deep Residual Learning for Image Recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. <https://arxiv.org/pdf/1512.03385.pdf>
179
+
180
+ # License
181
+
182
+ Copyright (c) MONAI Consortium
183
+
184
+ Licensed under the Apache License, Version 2.0 (the "License");
185
+ you may not use this file except in compliance with the License.
186
+ You may obtain a copy of the License at
187
+
188
+ http://www.apache.org/licenses/LICENSE-2.0
189
+
190
+ Unless required by applicable law or agreed to in writing, software
191
+ distributed under the License is distributed on an "AS IS" BASIS,
192
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
193
+ See the License for the specific language governing permissions and
194
+ limitations under the License.
docs/data_license.txt ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CAMELYON16 data set by Computational Pathology Group of Radboud University
2
+ Medical Centre
3
+
4
+ CAMELYON16 data set is available under CC0.
5
+
6
+ ==========================================================================
7
+
8
+ Creative Commons Legal Code
9
+
10
+ CC0 1.0 Universal
11
+
12
+ CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
13
+ LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
14
+ ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
15
+ INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
16
+ REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
17
+ PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
18
+ THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
19
+ HEREUNDER.
20
+
21
+ Statement of Purpose
22
+
23
+ The laws of most jurisdictions throughout the world automatically confer
24
+ exclusive Copyright and Related Rights (defined below) upon the creator
25
+ and subsequent owner(s) (each and all, an "owner") of an original work of
26
+ authorship and/or a database (each, a "Work").
27
+
28
+ Certain owners wish to permanently relinquish those rights to a Work for
29
+ the purpose of contributing to a commons of creative, cultural and
30
+ scientific works ("Commons") that the public can reliably and without fear
31
+ of later claims of infringement build upon, modify, incorporate in other
32
+ works, reuse and redistribute as freely as possible in any form whatsoever
33
+ and for any purposes, including without limitation commercial purposes.
34
+ These owners may contribute to the Commons to promote the ideal of a free
35
+ culture and the further production of creative, cultural and scientific
36
+ works, or to gain reputation or greater distribution for their Work in
37
+ part through the use and efforts of others.
38
+
39
+ For these and/or other purposes and motivations, and without any
40
+ expectation of additional consideration or compensation, the person
41
+ associating CC0 with a Work (the "Affirmer"), to the extent that he or she
42
+ is an owner of Copyright and Related Rights in the Work, voluntarily
43
+ elects to apply CC0 to the Work and publicly distribute the Work under its
44
+ terms, with knowledge of his or her Copyright and Related Rights in the
45
+ Work and the meaning and intended legal effect of CC0 on those rights.
46
+
47
+ 1. Copyright and Related Rights. A Work made available under CC0 may be
48
+ protected by copyright and related or neighboring rights ("Copyright and
49
+ Related Rights"). Copyright and Related Rights include, but are not
50
+ limited to, the following:
51
+
52
+ i. the right to reproduce, adapt, distribute, perform, display,
53
+ communicate, and translate a Work;
54
+ ii. moral rights retained by the original author(s) and/or performer(s);
55
+ iii. publicity and privacy rights pertaining to a person's image or
56
+ likeness depicted in a Work;
57
+ iv. rights protecting against unfair competition in regards to a Work,
58
+ subject to the limitations in paragraph 4(a), below;
59
+ v. rights protecting the extraction, dissemination, use and reuse of data
60
+ in a Work;
61
+ vi. database rights (such as those arising under Directive 96/9/EC of the
62
+ European Parliament and of the Council of 11 March 1996 on the legal
63
+ protection of databases, and under any national implementation
64
+ thereof, including any amended or successor version of such
65
+ directive); and
66
+ vii. other similar, equivalent or corresponding rights throughout the
67
+ world based on applicable law or treaty, and any national
68
+ implementations thereof.
69
+
70
+ 2. Waiver. To the greatest extent permitted by, but not in contravention
71
+ of, applicable law, Affirmer hereby overtly, fully, permanently,
72
+ irrevocably and unconditionally waives, abandons, and surrenders all of
73
+ Affirmer's Copyright and Related Rights and associated claims and causes
74
+ of action, whether now known or unknown (including existing as well as
75
+ future claims and causes of action), in the Work (i) in all territories
76
+ worldwide, (ii) for the maximum duration provided by applicable law or
77
+ treaty (including future time extensions), (iii) in any current or future
78
+ medium and for any number of copies, and (iv) for any purpose whatsoever,
79
+ including without limitation commercial, advertising or promotional
80
+ purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
81
+ member of the public at large and to the detriment of Affirmer's heirs and
82
+ successors, fully intending that such Waiver shall not be subject to
83
+ revocation, rescission, cancellation, termination, or any other legal or
84
+ equitable action to disrupt the quiet enjoyment of the Work by the public
85
+ as contemplated by Affirmer's express Statement of Purpose.
86
+
87
+ 3. Public License Fallback. Should any part of the Waiver for any reason
88
+ be judged legally invalid or ineffective under applicable law, then the
89
+ Waiver shall be preserved to the maximum extent permitted taking into
90
+ account Affirmer's express Statement of Purpose. In addition, to the
91
+ extent the Waiver is so judged Affirmer hereby grants to each affected
92
+ person a royalty-free, non transferable, non sublicensable, non exclusive,
93
+ irrevocable and unconditional license to exercise Affirmer's Copyright and
94
+ Related Rights in the Work (i) in all territories worldwide, (ii) for the
95
+ maximum duration provided by applicable law or treaty (including future
96
+ time extensions), (iii) in any current or future medium and for any number
97
+ of copies, and (iv) for any purpose whatsoever, including without
98
+ limitation commercial, advertising or promotional purposes (the
99
+ "License"). The License shall be deemed effective as of the date CC0 was
100
+ applied by Affirmer to the Work. Should any part of the License for any
101
+ reason be judged legally invalid or ineffective under applicable law, such
102
+ partial invalidity or ineffectiveness shall not invalidate the remainder
103
+ of the License, and in such case Affirmer hereby affirms that he or she
104
+ will not (i) exercise any of his or her remaining Copyright and Related
105
+ Rights in the Work or (ii) assert any associated claims and causes of
106
+ action with respect to the Work, in either case contrary to Affirmer's
107
+ express Statement of Purpose.
108
+
109
+ 4. Limitations and Disclaimers.
110
+
111
+ a. No trademark or patent rights held by Affirmer are waived, abandoned,
112
+ surrendered, licensed or otherwise affected by this document.
113
+ b. Affirmer offers the Work as-is and makes no representations or
114
+ warranties of any kind concerning the Work, express, implied,
115
+ statutory or otherwise, including without limitation warranties of
116
+ title, merchantability, fitness for a particular purpose, non
117
+ infringement, or the absence of latent or other defects, accuracy, or
118
+ the present or absence of errors, whether or not discoverable, all to
119
+ the greatest extent permissible under applicable law.
120
+ c. Affirmer disclaims responsibility for clearing rights of other persons
121
+ that may apply to the Work or any use thereof, including without
122
+ limitation any person's Copyright and Related Rights in the Work.
123
+ Further, Affirmer disclaims responsibility for obtaining any necessary
124
+ consents, permissions or other rights required for any use of the
125
+ Work.
126
+ d. Affirmer understands and acknowledges that Creative Commons is not a
127
+ party to this document and has no duty or obligation with respect to
128
+ this CC0 or use of the Work.
models/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0d9b9e714e18a90c1f7f7d9c7e47f807c59f9f8c681b84865fae208fcbb4d6
3
+ size 44780565
scripts/evaluate_froc.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ LEVEL=6
4
+ SPACING=0.243
5
+ READER=openslide
6
+ EVAL_DIR=../eval
7
+ GROUND_TRUTH_DIR=/workspace/data/medical/pathology/testing/ground_truths
8
+
9
+ echo "=> Level= ${LEVEL}"
10
+ echo "=> Spacing = ${SPACING}"
11
+ echo "=> WSI Reader: ${READER}"
12
+ echo "=> Evaluation output directory: ${EVAL_DIR}"
13
+ echo "=> Ground truth directory: ${GROUND_TRUTH_DIR}"
14
+
15
+ python3 ./lesion_froc.py \
16
+ --level $LEVEL \
17
+ --spacing $SPACING \
18
+ --reader $READER \
19
+ --eval-dir ${EVAL_DIR} \
20
+ --ground-truth-dir ${GROUND_TRUTH_DIR}
scripts/lesion_froc.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ from monai.apps.pathology import LesionFROC
5
+
6
+
7
+ def full_path(dir: str, file: str):
8
+ return os.path.normpath(os.path.join(dir, file))
9
+
10
+
11
+ def load_data(ground_truth_dir: str, eval_dir: str, level: int, spacing: float):
12
+ # Get the list of probability map result files
13
+ prob_files = os.listdir(eval_dir)
14
+
15
+ # read the dataset and create an eval_dataset based on that.
16
+ eval_dataset = []
17
+ for prob_name in prob_files:
18
+ if prob_name.endswith(".npy"):
19
+ sample = {
20
+ "tumor_mask": full_path(ground_truth_dir, prob_name.replace("npy", "tif")),
21
+ "prob_map": full_path(eval_dir, prob_name),
22
+ "level": level,
23
+ "pixel_spacing": spacing,
24
+ }
25
+
26
+ eval_dataset.append(sample)
27
+
28
+ return eval_dataset
29
+
30
+
31
+ def evaluate_froc(data, reader):
32
+ lesion_froc = LesionFROC(data, image_reader_name=reader)
33
+ score = lesion_froc.evaluate()
34
+ return score
35
+
36
+
37
+ if __name__ == "__main__":
38
+ # Parse command line arguments
39
+ parser = argparse.ArgumentParser()
40
+ parser.add_argument("-s", "--spacing", type=float, default=0.243, dest="spacing")
41
+ parser.add_argument("-l", "--level", type=int, default=6, dest="level")
42
+ parser.add_argument("-r", "--reader", type=str, default="cucim", dest="reader")
43
+ parser.add_argument("-e", "--eval-dir", type=str, dest="eval_dir")
44
+ parser.add_argument("-g", "--ground-truth-dir", type=str, dest="ground_truth_dir")
45
+ args = parser.parse_args()
46
+
47
+ # prepare FROC input data
48
+ data = load_data(args.ground_truth_dir, args.eval_dir, args.level, args.spacing)
49
+ if len(data) < 1:
50
+ raise RuntimeError(f"No probability map result found in '{args.eval_dir}' with '.npy' extension.")
51
+
52
+ # evaluate FROC
53
+ score = evaluate_froc(data, args.reader)
54
+ with open(full_path(args.eval_dir, "froc_score.txt"), "w") as f:
55
+ f.write(f"FROC Score: {score}\n")
56
+ print(f"FROC Score: {score}")
testing.csv ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ test_001
2
+ test_002
3
+ test_004
4
+ test_008
5
+ test_010
6
+ test_011
7
+ test_013
8
+ test_016
9
+ test_021
10
+ test_026
11
+ test_027
12
+ test_029
13
+ test_030
14
+ test_033
15
+ test_038
16
+ test_040
17
+ test_046
18
+ test_048
19
+ test_051
20
+ test_052
21
+ test_061
22
+ test_064
23
+ test_065
24
+ test_066
25
+ test_068
26
+ test_069
27
+ test_071
28
+ test_073
29
+ test_074
30
+ test_075
31
+ test_079
32
+ test_082
33
+ test_084
34
+ test_090
35
+ test_092
36
+ test_094
37
+ test_097
38
+ test_099
39
+ test_102
40
+ test_104
41
+ test_105
42
+ test_108
43
+ test_110
44
+ test_113
45
+ test_116
46
+ test_117
47
+ test_121
48
+ test_122
training.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e51c55b11485c51fea7f9dab7811edc120ab473da0f1349c4bf40c9d15d0b4
3
+ size 20690435
validation.csv ADDED
The diff for this file is too large to render. See raw diff