File size: 49,476 Bytes
b8597df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
"""
Utiltites for analyizing and visualizing model segmentations on dataset.
Yelena Bagdasarova, Scott Song
"""
import json
import os
import pickle
import sys
import warnings
import cv2
import detectron2
import detectron2.utils.comm as comm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.engine import DefaultPredictor
from detectron2.evaluation import COCOEvaluator
from detectron2.utils.visualizer import Visualizer
from matplotlib.backends.backend_pdf import PdfPages
from PIL import Image
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools.mask import decode
from sklearn.metrics import average_precision_score, precision_recall_curve
from tqdm import tqdm
# current_directory = os.getcwd()
# print(current_directory)
plt.style.use("./scripts/ybpres.mplstyle")
def grab_dataset(name):
"""Creates a function to load a pickled dataset by name.
This function returns another function that, when called, loads a dataset
from a pickle file located in the "datasets/" directory.
Args:
name (str): The base name of the dataset file (without extension).
Returns:
function: A zero-argument function that loads and returns the dataset.
"""
def f():
return pickle.load(open("datasets/" + name + ".pk", "rb"))
return f
class OutputVis:
"""A class to visualize model outputs and ground truth annotations."""
def __init__(
self,
dataset_name,
cfg=None,
prob_thresh=0.5,
pred_mode="model",
pred_file=None,
has_annotations=True,
draw_mode="default",
):
"""Initializes the OutputVis class.
Args:
dataset_name (str): The name of the registered Detectron2 dataset.
cfg (CfgNode, optional): The Detectron2 configuration object.
Required if `pred_mode` is "model". Defaults to None.
prob_thresh (float, optional): The probability threshold to apply
to model predictions for visualization. Defaults to 0.5.
pred_mode (str, optional): The mode for getting predictions. Must be
either "model" (to use a live predictor) or "file" (to load
from a COCO results file). Defaults to "model".
pred_file (str, optional): The path to the COCO JSON results file.
Required if `pred_mode` is "file". Defaults to None.
has_annotations (bool, optional): Whether the dataset has ground
truth annotations to visualize. Defaults to True.
draw_mode (str, optional): The drawing style for visualizations.
Can be "default" (color) or "bw" (monochrome). Defaults to "default".
"""
self.dataset_name = dataset_name
self.cfg = cfg
self.prob_thresh = prob_thresh
self.data = DatasetCatalog.get(dataset_name)
if pred_mode == "model":
self.predictor = DefaultPredictor(cfg)
self._mode = "model"
elif pred_mode == "file":
with open(pred_file, "r") as f:
self.pred_instances = json.load(f)
self.instance_img_list = [p["image_id"] for p in self.pred_instances]
self._mode = "file"
else:
sys.exit('Invalid mode. Only "model" or "file" permitted.')
self.has_annotations = has_annotations
self.permitted_draw_modes = ["default", "bw"]
self.set_draw_mode(draw_mode)
self.font_size = 16 # 28 for ARVO
self.annotation_color = "r"
self.scale = 3.0
def set_draw_mode(self, draw_mode):
"""Sets the drawing mode for visualizations.
Args:
draw_mode (str): The drawing style. Must be one of the permitted
modes (e.g., "default", "bw").
"""
if draw_mode not in self.permitted_draw_modes:
sys.exit("draw_mode must be one of the following: {}".format(self.permitted_draw_modes))
self.draw_mode = draw_mode
def get_ori_image(self, imgid):
"""Retrieves the original image for a given image ID.
The image is scaled up by a factor of 3 for better visualization.
Args:
imgid (str): The 'image_id' from the dataset dictionary.
Returns:
PIL.Image: The original image.
"""
dat = self.get_gt_image_data(imgid) # gt
im = cv2.imread(dat["file_name"]) # input to model
v_gt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale)
result_image = v_gt.output.get_image() # get original image
img = Image.fromarray(result_image)
return img
def get_gt_image_data(self, imgid):
"""Returns the ground truth data dictionary for a given image ID.
Args:
imgid (str): The 'image_id' from the dataset dictionary.
Returns:
dict: The dataset dictionary for the specified image.
"""
gt_data = next(item for item in self.data if (item["image_id"] == imgid))
return gt_data
def produce_gt_image(self, dat, im):
"""Creates an image with ground truth annotations overlaid.
The visualization can be in color or monochrome depending on the draw mode.
Args:
dat (dict): The dataset dictionary containing ground truth annotations.
im (np.ndarray): The input image in RGB format (H, W, C) as a NumPy array.
Returns:
PIL.Image: The image with ground truth instances overlaid.
"""
v_gt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale)
if self.has_annotations: # ground truth boxes and masks
segs = [ddict["segmentation"] for ddict in dat["annotations"]]
if self.draw_mode == "bw":
_bboxes = None
assigned_colors = [self.annotation_color] * len(segs)
else: # default behavior
bboxes = [ddict["bbox"] for ddict in dat["annotations"]]
_bboxes = detectron2.structures.Boxes(bboxes)
_bboxes = detectron2.structures.BoxMode.convert(
_bboxes.tensor, from_mode=1, to_mode=0
) # 0= XYXY, 1 = XYWH
assigned_colors = None
result_image = v_gt.overlay_instances(
boxes=_bboxes, masks=segs, assigned_colors=assigned_colors, alpha=1.0
).get_image()
else:
result_image = v_gt.output.get_image() # get original image if no annotations
img = Image.fromarray(result_image)
return img
def produce_model_image(self, imgid, dat, im):
"""Creates an image with model-predicted instances overlaid.
Predictions are either generated by the model or loaded from a file,
based on the configured `pred_mode`.
Args:
imgid (str): The 'image_id' from the dataset dictionary.
dat (dict): The dataset dictionary for the image (used for height/width).
im (np.ndarray): The input image in RGB format (H, W, C) as a NumPy array.
Returns:
PIL.Image: The image with model-predicted instances overlaid.
"""
v_dt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale)
v_dt._default_font_size = self.font_size
# get predictions from model or file
if self._mode == "model":
outputs = self.predictor(im)["instances"].to("cpu")
elif self._mode == "file":
outputs = self.get_outputs_from_file(imgid, (dat["height"], dat["width"]))
outputs = outputs[outputs.scores > self.prob_thresh] # apply probability threshold to instances
if self.draw_mode == "bw":
result_model = v_dt.overlay_instances(
masks=outputs.pred_masks, assigned_colors=[self.annotation_color] * len(outputs), alpha=1.0
).get_image()
else: # default behavior
result_model = v_dt.draw_instance_predictions(outputs).get_image()
img_model = Image.fromarray(result_model)
return img_model
def get_image(self, imgid):
"""Generates both ground truth and model prediction overlay images.
Args:
imgid (str): The 'image_id' from the dataset dictionary.
Returns:
tuple[PIL.Image, PIL.Image]: A tuple containing the ground truth
image and the model prediction image.
"""
dat = self.get_gt_image_data(imgid) # gt
im = cv2.imread(dat["file_name"]) # input to model
img = self.produce_gt_image(dat, im)
img_model = self.produce_model_image(imgid, dat, im)
return img, img_model
def get_outputs_from_file(self, imgid, imgsize):
"""Loads and formats model predictions from a COCO results file.
Converts COCO-formatted instances into a Detectron2 `Instances` object
suitable for the visualizer.
Args:
imgid (str): The 'image_id' of the desired image.
imgsize (tuple[int, int]): The (height, width) of the image.
Returns:
detectron2.structures.Instances: An `Instances` object containing
the predictions.
"""
pred_boxes = []
scores = []
pred_classes = []
pred_masks = []
for i, img in enumerate(self.instance_img_list):
if img == imgid:
pred_boxes.append(self.pred_instances[i]["bbox"])
scores.append(self.pred_instances[i]["score"])
pred_classes.append(int(self.pred_instances[i]["category_id"]))
# pred_masks_rle.append(self.pred_instances[i]['segmentation'])
pred_masks.append(decode(self.pred_instances[i]["segmentation"]))
_bboxes = detectron2.structures.Boxes(pred_boxes)
pred_boxes = detectron2.structures.BoxMode.convert(_bboxes.tensor, from_mode=1, to_mode=0) # 0= XYXY, 1 = XYWH
inst_dict = dict(
pred_boxes=pred_boxes,
scores=torch.tensor(np.array(scores)),
pred_classes=torch.tensor(np.array(pred_classes)),
pred_masks=torch.tensor(np.array(pred_masks)).to(torch.bool),
) # pred_masks_rle=pred_masks_rle)
outputs = detectron2.structures.Instances(imgsize, **inst_dict)
return outputs
@staticmethod
def height_crop_range(im, height_target=256):
"""Calculates a vertical crop range centered on the brightest part of an image.
Args:
im (np.ndarray): The input image as a NumPy array (H, W, C).
height_target (int, optional): The desired height of the crop.
Defaults to 256.
Returns:
range: A range object representing the start and end pixel rows for the crop.
"""
yhist = im.sum(axis=1) # integrate over width of image
mu = np.average(np.arange(yhist.shape[0]), weights=yhist)
h1 = int(np.floor(mu - height_target / 2)) # inclusive
h2 = int(np.ceil(mu + height_target / 2)) # exclusive
if h1 < 0:
h1 = 0
h2 = height_target
if h2 > yhist.shape[0]:
h2 = yhist.shape[0]
h1 = h2 - height_target
return range(h1, h2)
def output_to_pdf(self, imgids, outname, dfimg=None):
"""Exports visualizations of ground truth and model predictions to a PDF file.
Each page of the PDF contains the ground truth and model prediction for one image.
Args:
imgids (list[str]): A list of 'image_id' values to include in the PDF.
outname (str): The path and filename for the output PDF.
dfimg (pd.DataFrame, optional): A DataFrame with image statistics
to display on each page. Index should be `imgid`. Defaults to None.
"""
gtstr = ""
dtstr = ""
if dfimg is not None:
gtcols = dfimg.columns[["gt_" in col for col in dfimg.columns]]
dtcols = dfimg.columns[["dt_" in col for col in dfimg.columns]]
with PdfPages(outname) as pdf:
for imgid in tqdm(imgids):
img, img_model = self.get_image(imgid)
# pdb.set_trace()
crop_range = self.height_crop_range(np.array(img.convert("L")), height_target=256 * self.scale)
img = np.array(img)[crop_range]
img_model = np.array(img_model)[crop_range]
fig, ax = plt.subplots(2, 1, figsize=[22, 10], dpi=200)
ax[0].imshow(img)
ax[0].set_title(imgid + " Ground Truth")
ax[0].set_axis_off()
ax[1].imshow(img_model)
ax[1].set_title(imgid + " Model Prediction")
ax[1].set_axis_off()
if dfimg is not None: # annotate with provided stats
gtstr = ["{:s}={:.2f}".format(col, dfimg.loc[imgid, col]) for col in gtcols]
ax[0].text(0, 0.05 * (ax[0].get_ylim()[0]), gtstr, color="white", fontsize=14)
dtstr = ["{:s}={:.2f}".format(col, dfimg.loc[imgid, col]) for col in dtcols]
ax[1].text(0, 0.05 * (ax[1].get_ylim()[0]), dtstr, color="white", fontsize=14)
pdf.savefig(fig)
plt.close(fig)
def save_imgarr_to_tiff(self, imgs, outname):
"""Saves a list of PIL images to a multi-page TIFF file.
Args:
imgs (list[PIL.Image]): A list of images to save.
outname (str): The path and filename for the output TIFF.
"""
if len(imgs) > 1:
imgs[0].save(outname, dpi=(400, 400), tags="", compression=None, save_all=True, append_images=imgs[1:])
else:
imgs[0].save(outname)
def output_ori_to_tiff(self, imgids, outname):
"""Saves the original images for a list of IDs to a multi-page TIFF.
Args:
imgids (list[str]): A list of 'image_id' values.
outname (str): The path and filename for the output TIFF.
"""
imgs = []
for imgid in tqdm(imgids):
img_ori = self.get_ori_image(imgid) # PIL Image
imgs.append(img_ori)
self.save_imgarr_to_tiff(imgs, outname)
def output_pred_to_tiff(self, imgids, outname, pred_only=False):
"""Saves model prediction overlays for a list of IDs to a multi-page TIFF.
Args:
imgids (list[str]): A list of 'image_id' values.
outname (str): The path and filename for the output TIFF.
pred_only (bool, optional): If True, overlays predictions on a
black background instead of the original image. Defaults to False.
"""
imgs = self.output_pred_to_list(imgids, pred_only)
self.save_imgarr_to_tiff(imgs, outname)
def output_pred_to_list(self, imgids, pred_only=False):
"""Generates a list of images with model predictions overlaid.
Args:
imgids (list[str]): A list of 'image_id' values.
pred_only (bool, optional): If True, overlays predictions on a
black background. Defaults to False.
Returns:
list[PIL.Image]: A list of the generated visualization images.
"""
imgs = []
for imgid in tqdm(imgids):
dat = self.get_gt_image_data(imgid) # gt
if pred_only:
im = np.zeros((dat["height"], dat["width"], 3)) # blank image for overlay
assert (
self._mode == "file"
), 'pred_mode must be "file" when pred_only flage is set to True.' # fix this later
else:
im = cv2.imread(dat["file_name"]) # input to model
img_dt = self.produce_model_image(imgid, dat, im)
imgs.append(img_dt)
return imgs
def output_all_to_tiff(self, imgids, outname):
"""Saves a combined visualization (original, GT, prediction) to a TIFF.
For each image ID, it creates a single composite image by concatenating
the original, ground truth overlay, and model prediction overlay, then
saves them to a multi-page TIFF.
Args:
imgids (list[str]): A list of 'image_id' values.
outname (str): The path and filename for the output TIFF.
"""
imgs = []
for imgid in tqdm(imgids):
img_gt, img_dt = self.get_image(imgid)
img_ori = self.get_ori_image(imgid)
hcrange = list(self.height_crop_range(np.array(img_ori.convert("L")), height_target=256 * self.scale))
img_result = Image.fromarray(
np.concatenate(
(
np.array(img_ori.convert("RGB"))[hcrange, :],
np.array(img_gt)[hcrange, :],
np.array(img_dt)[hcrange],
)
)
)
imgs.append(img_result)
self.save_imgarr_to_tiff(imgs, outname)
def get_enface_dt(self, grp, scan_height, scan_width, scan_spacing):
"""Generates an en-face view of model predictions for a scan volume.
Args:
grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid.
scan_height (int): The height of a single scan image in pixels.
scan_width (int): The width of a single scan image in pixels.
scan_spacing (float): The spacing between scan centers in pixels.
Returns:
np.ndarray: An en-face image of the model predictions.
"""
grp = grp.sort_index()
nscans = len(grp)
enface_height = int(np.ceil((nscans - 1) * scan_spacing))
enface = np.zeros((enface_height, scan_width, 3), dtype=int)
for i, imgid in enumerate(grp.index):
pos = int(np.clip(np.floor(scan_spacing * i), 0, scan_width - 1)) # vertical enface position
outputs = self.get_outputs_from_file(imgid, (scan_height, scan_width))
outputs = outputs[outputs.scores > self.prob_thresh]
instances = outputs.pred_boxes[:, (0, 2)].round().clip(0, scan_width - 1).to(np.int)
for inst in instances:
try:
enface[max(pos - 4, 0) : min(pos + 4, scan_width - 1), inst[0] : inst[1]] = np.array(
[255, 255, 255]
) # random_color(rgb = True)
except IndexError:
print(pos, inst[0], inst[1])
return enface
def get_enface_gt(self, grp, scan_height, scan_width, scan_spacing):
"""Generates an en-face view of ground truth annotations for a scan volume.
Args:
grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid.
scan_height (int): The height of a single scan image in pixels.
scan_width (int): The width of a single scan image in pixels.
scan_spacing (float): The spacing between scan centers in pixels.
Returns:
np.ndarray: An en-face image of the ground truth annotations.
"""
grp = grp.sort_index()
nscans = len(grp)
enface_height = int(np.ceil((nscans - 1) * scan_spacing))
enface = np.zeros((enface_height, scan_width, 3), dtype=int)
if not self.has_annotations:
enface[:, :] = np.array([100, 100, 100])
else:
# minx = scan_width
for i, imgid in enumerate(grp.index):
pos = int(np.clip(np.floor(scan_spacing * i), 0, scan_width - 1))
instances = self.get_gt_image_data(imgid)["annotations"]
for inst in instances:
x1 = inst["bbox"][0]
# minx = min(minx,x1)
x2 = x1 + inst["bbox"][2]
try:
enface[max(pos - 4, 0) : min(pos + 4, scan_width - 1), x1:x2] = np.array(
[255, 255, 255]
) # random_color(rgb = True)
except IndexError:
print(pos, x1, x2)
return enface
def compare_enface(self, grp, name, scan_height, scan_width, scan_spacing):
"""Creates a figure comparing the en-face views of predictions and ground truth.
Args:
grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid.
name (str): The name/ID of the scan volume for the plot title.
scan_height (int): The height of a single scan image in pixels.
scan_width (int): The width of a single scan image in pixels.
scan_spacing (float): The spacing between scan centers in pixels.
Returns:
tuple[plt.Figure, np.ndarray]: A tuple containing the figure and axes objects.
"""
fig, ax = plt.subplots(1, 2, figsize=[18, 9], dpi=120)
enface = self.get_enface_dt(grp, scan_height, scan_width, scan_spacing)
ax[0].imshow(enface)
ax[0].set_title(str(name) + " DT")
ax[0].set_aspect("equal")
enface = self.get_enface_gt(grp, scan_height, scan_width, scan_spacing)
ax[1].imshow(enface)
ax[1].set_title(str(name) + " GT")
ax[1].set_aspect("equal")
return fig, ax
def wilson_ci(p, n, z):
"""Calculates the Wilson score interval for a binomial proportion.
Args:
p (float): The observed proportion of successes.
n (int): The total number of trials.
z (float): The z-score for the desired confidence level (e.g., 1.96 for 95%).
Returns:
tuple[float, float]: A tuple containing the lower and upper bounds of the confidence interval.
"""
if p < 0 or p > 1 or n == 0:
if p < 0 or p > 1:
warnings.warn(f"The value of proportion {p} must be in the range [0,1]. Returning identity for CIs.")
else:
warnings.warn(f"The number of counts {n} must be above zero. Returning identity for CIs.")
return (p, p)
sym = z * (p * (1 - p) / n + z * z / 4 / n / n) ** 0.5
asym = p + z * z / 2 / n
fact = 1 / (1 + z * z / n)
upper = fact * (asym + sym)
lower = fact * (asym - sym)
return (lower, upper)
class EvaluateClass(COCOEvaluator):
"""A custom evaluation class extending COCOEvaluator for detailed analysis."""
def __init__(self, dataset_name, output_dir, prob_thresh=0.5, iou_thresh=0.1, evalsuper=True):
"""Initializes the custom evaluator.
Args:
dataset_name (str): The name of the registered Detectron2 dataset.
output_dir (str): Directory to store temporary evaluation files.
prob_thresh (float, optional): Probability threshold for calculating
precision, recall, and FPR. Defaults to 0.5.
iou_thresh (float, optional): IoU threshold for defining a true positive.
Defaults to 0.1.
evalsuper (bool, optional): If True, run the parent COCOEvaluator's
evaluate method to generate standard COCO metrics. Defaults to True.
"""
super().__init__(dataset_name, tasks={"bbox", "segm"}, output_dir=output_dir)
self.dataset_name = dataset_name
self.mycoco = None # pycocotools.cocoEval instance
self.cocoDt = None
self.cocoGt = None
self.evalsuper = evalsuper # if True, run COCOEvaluator.evaluate() when self.evaluate is run
self.prob_thresh = prob_thresh # instance probabilty threshold for scalars (precision,recall,fpr for scans)
self.iou_thresh = iou_thresh # iou threshold for defining precision,recall
self.pr = None
self.rc = None
self.fpr = None
def reset(self):
"""Resets the evaluator's state for a new evaluation run."""
super().reset()
self.mycoco = None
def process(self, inputs, outputs):
"""Processes a batch of inputs and outputs from the model.
This method is called by the evaluation loop for each batch.
Args:
inputs (list[dict]): A list of dataset dictionaries.
outputs (list[dict]): A list of model output dictionaries.
"""
super().process(inputs, outputs)
def evaluate(self):
"""Runs the evaluation and calculates detailed performance metrics.
This method orchestrates the COCO evaluation, calculates precision-recall
curves, and other custom metrics.
Returns:
tuple[float, float]: The precision and recall at the specified
`prob_thresh` and `iou_thresh`.
"""
if self.evalsuper:
_ = super().evaluate() # this call populates coco_instances_results.json
comm.synchronize()
if not comm.is_main_process():
return ()
self.cocoGt = COCO(
os.path.join(self._output_dir, self.dataset_name + "_coco_format.json")
) # produced when super is initialized
self.cocoDt = self.cocoGt.loadRes(
os.path.join(self._output_dir, "coco_instances_results.json")
) # load detector results
self.mycoco = COCOeval(self.cocoGt, self.cocoDt, iouType="segm")
self.num_images = len(self.mycoco.params.imgIds)
print("Calculated metrics for {} images".format(self.num_images))
self.mycoco.params.iouThrs = np.arange(0.10, 0.6, 0.1)
self.mycoco.params.maxDets = [100]
self.mycoco.params.areaRng = [[0, 10000000000.0]]
self.mycoco.evaluate()
self.mycoco.accumulate()
self.pr = self.mycoco.eval["precision"][
:, :, 0, 0, 0 # iouthresh # recall level # catagory # area range
] # max detections per image
self.rc = self.mycoco.params.recThrs
self.iou = self.mycoco.params.iouThrs
self.scores = self.mycoco.eval["scores"][:, :, 0, 0, 0] # unreliable if GT has no instances
p, r = self.get_precision_recall()
return p, r
def plot_pr_curve(self, ax=None):
"""Plots precision-recall curves for various IoU thresholds.
Args:
ax (plt.Axes, optional): A matplotlib axes object to plot on. If None,
a new figure and axes are created.
"""
if ax is None:
fig, ax = plt.subplots(1, 1)
for i in range(len(self.iou)):
ax.plot(self.rc, self.pr[i], label="{:.2}".format(self.iou[i]))
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
ax.set_title("")
ax.legend(title="IoU")
def plot_recall_vs_prob(self):
"""Plots model score thresholds versus recall for various IoU thresholds."""
plt.figure()
for i in range(len(self.iou)):
plt.plot(self.rc, self.scores[i], label="{:.2}".format(self.iou[i]))
plt.ylabel("Model probability")
plt.xlabel("Recall")
plt.legend(title="IoU")
def get_precision_recall(self):
"""Gets the precision and recall for the configured IoU and probability thresholds.
Returns:
tuple[float, float]: The calculated precision and recall.
"""
iou_idx, rc_idx = self._find_iou_rc_inds()
precision = self.pr[iou_idx, rc_idx]
recall = self.rc[rc_idx]
return precision, recall
def _calculate_fpr_matrix(self):
"""(Private) Calculates the false positive rate matrix across all IoU and recall thresholds."""
# FP rate, 1 RPD in image = FP
if (self.scores.min() == -1) and (self.scores.max() == -1):
print(
"WARNING: Scores for all iou thresholds and all recall levels are not defined. "
"This can arise if ground truth annotations contain no instances. Leaving fpr matrix as None"
)
self.fpr = None
return
fpr = np.zeros((len(self.iou), len(self.rc)))
for i in range(len(self.iou)):
for j, s in enumerate(self.scores[i]): # j -> recall level, s -> corresponding score
ng = 0 # number of negative images
fp = 0 # number of false positives images
for el in self.mycoco.evalImgs:
if el is None: # no predictions, no gts
ng = ng + 1
elif len(el["gtIds"]) == 0: # some predictions and no gts
ng = ng + 1
if (
np.array(el["dtScores"]) > s
).sum() > 0: # if at least one score over threshold for recall level
fp = fp + 1 # count as FP
else:
continue
fpr[i, j] = fp / ng
self.fpr = fpr
def _calculate_fpr(self):
"""(Private) Calculates FPR for a single probability threshold.
This is an alternate calculation used when the main FPR matrix cannot
be computed (e.g., no positive ground truth instances).
Returns:
float: The calculated false positive rate.
"""
print("Using alternate calculation for fpr at instance score threshold of {}".format(self.prob_thresh))
ng = 0 # number of negative images
fp = 0 # number of false positives images
for el in self.mycoco.evalImgs:
if el is None: # no predictions, no gts
ng = ng + 1
elif len(el["gtIds"]) == 0: # some predictions and no gts
ng = ng + 1
if (
np.array(el["dtScores"]) > self.prob_thresh
).sum() > 0: # if at least one score over threshold for recall level
fp = fp + 1 # count as FP
else: # gt has instances
continue
return fp / (ng + 1e-5)
def _find_iou_rc_inds(self):
"""(Private) Finds the indices corresponding to the configured IoU and probability thresholds.
Returns:
tuple[int, int]: The index for the IoU threshold and the index for the recall level.
"""
try:
iou_idx = np.argwhere(self.iou == self.iou_thresh)[0][0] # first instance of
except IndexError:
print(
"iou threshold {} not found in mycoco.params.iouThrs {}".format(
self.iou_thresh, self.mycoco.params.iouThrs
)
)
exit(1)
# test above for out of bounds
inds = np.argwhere(self.scores[iou_idx] >= self.prob_thresh)
if len(inds) > 0:
rc_idx = inds[-1][0] # get recall index corresponding to prob_thresh
else:
rc_idx = 0
return iou_idx, rc_idx
def get_fpr(self):
"""Gets the false positive rate for the configured thresholds.
Returns:
float: The calculated false positive rate. Returns -1 if it cannot be computed.
"""
if self.fpr is None:
self._calculate_fpr_matrix()
if self.fpr is not None:
iou_idx, rc_idx = self._find_iou_rc_inds()
fpr = self.fpr[iou_idx, rc_idx]
elif len(self.mycoco.cocoGt.anns) == 0:
fpr = self._calculate_fpr()
else:
fpr = -1
return fpr
def summarize_scalars(self): # for pretty printing
"""Generates a dictionary summarizing key performance metrics with confidence intervals.
Returns:
dict: A dictionary containing precision, recall, F1-score, FPR,
and their confidence intervals.
"""
p, r = self.get_precision_recall()
f1 = 2 * (p * r) / (p + r)
fpr = self.get_fpr()
# Confidence intervals
z = 1.96 # 95% Gaussian
# instance count
inst_cnt = self.count_instances()
n_r = inst_cnt["gt_instances"]
n_p = inst_cnt["dt_instances"]
n_fpr = inst_cnt["gt_neg_scans"]
def stat_ci(p, n, z):
return z * np.sqrt(p * (1 - p) / n)
r_ci = wilson_ci(r, n_r, z)
p_ci = wilson_ci(p, n_p, z)
fpr_ci = wilson_ci(fpr, n_fpr, z)
# propogate errors for f1
int_r = stat_ci(r, n_r, z)
int_p = stat_ci(p, n_p, z)
int_f1 = (f1) * np.sqrt(int_r**2 * (1 / r - 1 / (p + r)) ** 2 + int_p**2 * (1 / p - 1 / (p + r)) ** 2)
f1_ci = (f1 - int_f1, f1 + int_f1)
dd = dict(
dataset=self.dataset_name,
precision=float(p),
precision_ci=p_ci,
recall=float(r),
recall_ci=r_ci,
f1=float(f1),
f1_ci=f1_ci,
fpr=float(fpr),
fpr_ci=fpr_ci,
iou=self.iou_thresh,
probability=self.prob_thresh,
)
return dd
def count_instances(self):
"""Counts ground truth and detected instances across the dataset.
Returns:
dict: A dictionary with counts for 'gt_instances', 'dt_instances',
and 'gt_neg_scans' (images with no GT instances).
"""
gt_inst = 0
dt_inst = 0
gt_neg_scans = 0
for _, val in self.cocoGt.imgs.items():
imgid = val["id"]
# Gt instances
annids_gt = self.cocoGt.getAnnIds([imgid])
anns_gt = self.cocoGt.loadAnns(annids_gt)
gt_inst += len(anns_gt)
if len(anns_gt) == 0:
gt_neg_scans += 1
# Dt instances
annids_dt = self.cocoDt.getAnnIds([imgid])
anns_dt = self.cocoDt.loadAnns(annids_dt)
anns_dt = [ann for ann in anns_dt if ann["score"] > self.prob_thresh]
dt_inst += len(anns_dt)
return dict(gt_instances=gt_inst, dt_instances=dt_inst, gt_neg_scans=gt_neg_scans)
class CreatePlotsRPD:
"""A class to create various plots for analyzing RPD (Reticular Pseudodrusen) data."""
def __init__(self, dfimg):
"""Initializes the plotting class with image-level data.
Args:
dfimg (pd.DataFrame): A DataFrame where each row corresponds to an
image, containing counts for ground truth and detected instances
and pixels. Must include a 'volID' column.
"""
self.dfimg = dfimg
self.dfvol = self.dfimg.groupby(["volID"])[
["gt_instances", "gt_pxs", "gt_xpxs", "dt_instances", "dt_pxs", "dt_xpxs"]
].sum()
@classmethod
def initfromcoco(cls, mycoco, prob_thresh):
"""Initializes the class from a COCOeval object.
Args:
mycoco (COCOeval): An evaluated COCOeval object.
prob_thresh (float): The probability threshold to apply to detections.
Returns:
CreatePlotsRPD: An instance of the class.
"""
df = pd.DataFrame(
index=mycoco.cocoGt.imgs.keys(),
columns=["gt_instances", "gt_pxs", "gt_xpxs", "dt_instances", "dt_pxs", "dt_xpxs"],
dtype=np.uint64,
)
for key, val in mycoco.cocoGt.imgs.items():
imgid = val["id"]
# Gt instances
annids_gt = mycoco.cocoGt.getAnnIds([imgid])
anns_gt = mycoco.cocoGt.loadAnns(annids_gt)
inst_gt = [mycoco.cocoGt.annToMask(ann).sum() for ann in anns_gt]
xproj_gt = [(mycoco.cocoGt.annToMask(ann).sum(axis=0) > 0).astype("uint8").sum() for ann in anns_gt]
# Dt instances
annids_dt = mycoco.cocoDt.getAnnIds([imgid])
anns_dt = mycoco.cocoDt.loadAnns(annids_dt)
anns_dt = [ann for ann in anns_dt if ann["score"] > prob_thresh]
inst_dt = [mycoco.cocoDt.annToMask(ann).sum() for ann in anns_dt]
xproj_dt = [(mycoco.cocoDt.annToMask(ann).sum(axis=0) > 0).astype("uint8").sum() for ann in anns_dt]
dat = [
len(inst_gt),
np.array(inst_gt).sum(),
np.array(xproj_gt).sum(),
len(inst_dt),
np.array(inst_dt).sum(),
np.array(xproj_dt).sum(),
]
df.loc[key] = dat
newdf = pd.DataFrame(
[idx.rsplit(".", 1)[0].rsplit("_", 1) for idx in df.index], columns=["volID", "scan"], index=df.index
)
df = df.merge(newdf, how="inner", left_index=True, right_index=True)
return cls(df)
@classmethod
def initfromcsv(cls, fname):
"""Initializes the class from a CSV file.
Args:
fname (str): The path to the CSV file.
Returns:
CreatePlotsRPD: An instance of the class.
"""
df = pd.read_csv(fname)
return cls(df)
def get_max_limits(self, df):
"""Calculates the maximum values for plotting limits.
Args:
df (pd.DataFrame): The DataFrame to analyze.
Returns:
tuple[int, int, int]: Max values for instances, x-pixels, and total pixels.
"""
max_inst = np.max([df.gt_instances.max(), df.dt_instances.max()])
max_xpxs = np.max([df.gt_xpxs.max(), df.dt_xpxs.max()])
max_pxs = np.max([df.gt_pxs.max(), df.dt_pxs.max()])
# print('Max instances:',max_inst)
# print('Max xpxs:',max_xpxs)
# print('Max pxs:',max_pxs)
return max_inst, max_xpxs, max_pxs
def vol_level_prc(self, df, gt_thresh=5, ax=None):
"""Plots a volume-level precision-recall curve.
Args:
df (pd.DataFrame): DataFrame with volume-level statistics.
gt_thresh (int, optional): The minimum number of ground truth
instances for a volume to be considered positive. Defaults to 5.
ax (plt.Axes, optional): Axes to plot on. Defaults to None.
Returns:
tuple[float, tuple]: The average precision and the PR curve data.
"""
prc = precision_recall_curve(df.gt_instances >= gt_thresh, df.dt_instances)
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.plot(prc[1], prc[0])
ax.set_xlabel("RPD Volume Recall")
ax.set_ylabel("RPD Volume Precision")
ap = average_precision_score(df.gt_instances >= gt_thresh, df.dt_instances)
return ap, prc
def plot_img_level_instance_thresholding(self, df, inst):
"""Plots P/R/FPR as a function of the instance count threshold.
Args:
df (pd.DataFrame): DataFrame with image-level statistics.
inst (list[int]): A list of instance count thresholds to evaluate.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: Arrays for precision,
recall, and FPR at each threshold.
"""
rc = np.zeros((len(inst),))
pr = np.zeros((len(inst),))
fpr = np.zeros((len(inst),))
fig, ax = plt.subplots(1, 3, figsize=[15, 5])
for i, dt_thresh in enumerate(inst):
gt = df.gt_instances > dt_thresh
dt = df.dt_instances > dt_thresh
rc[i] = (gt & dt).sum() / gt.sum()
pr[i] = (gt & dt).sum() / dt.sum()
fpr[i] = ((~gt) & (dt)).sum() / ((~gt).sum())
ax[1].plot(inst, pr)
ax[1].set_ylim(0.45, 1.01)
ax[1].set_xlabel("instance threshold")
ax[1].set_ylabel("Precision")
ax[0].plot(inst, rc)
ax[0].set_ylim(0.45, 1.01)
ax[0].set_ylabel("Recall")
ax[0].set_xlabel("instance threshold")
ax[2].plot(inst, fpr)
ax[2].set_ylim(0, 0.80)
ax[2].set_xlabel("instance threshold")
ax[2].set_ylabel("FPR")
plt.tight_layout()
return pr, rc, fpr
def plot_img_level_instance_thresholding2(self, df, inst, gt_thresh, plot=True):
"""Plots P/R/FPR vs. instance threshold with confidence intervals.
Args:
df (pd.DataFrame): DataFrame with image-level statistics.
inst (list[int]): A list of instance count thresholds to evaluate.
gt_thresh (int): The ground truth instance threshold.
plot (bool, optional): Whether to generate a plot. Defaults to True.
Returns:
dict: A dictionary containing arrays for P/R/FPR and their CIs.
"""
rc = np.zeros((len(inst),))
pr = np.zeros((len(inst),))
fpr = np.zeros((len(inst),))
rc_ci = np.zeros((len(inst), 2))
pr_ci = np.zeros((len(inst), 2))
fpr_ci = np.zeros((len(inst), 2))
for i, dt_thresh in enumerate(inst):
gt = df.gt_instances >= gt_thresh
dt = df.dt_instances >= dt_thresh
rc[i] = (gt & dt).sum() / gt.sum()
pr[i] = (gt & dt).sum() / dt.sum()
fpr[i] = ((~gt) & (dt)).sum() / ((~gt).sum())
rc_ci[i, :] = wilson_ci(rc[i], gt.sum(), 1.96)
pr_ci[i, :] = wilson_ci(pr[i], dt.sum(), 1.96)
fpr_ci[i, :] = wilson_ci(fpr[i], ((~gt).sum()), 1.96)
if plot:
fig, ax = plt.subplots(1, 3, figsize=[15, 5])
# ax[0].plot(rc,pr)
# ax[0].set_xlabel('Recall')
# ax[0].set_ylabel('Precision')
ax[1].plot(inst, pr)
ax[1].fill_between(inst, pr_ci[:, 0], pr_ci[:, 1], alpha=0.25)
# ax[1].set_ylim(0.45,1.01)
ax[1].set_xlabel("instance threshold")
ax[1].set_ylabel("Precision")
ax[0].plot(inst, rc)
ax[0].fill_between(inst, rc_ci[:, 0], rc_ci[:, 1], alpha=0.25)
# ax[0].set_ylim(0.45,1.01)
ax[0].set_ylabel("Recall")
ax[0].set_xlabel("instance threshold")
ax[2].plot(inst, fpr)
ax[2].fill_between(inst, fpr_ci[:, 0], fpr_ci[:, 1], alpha=0.25)
# ax[2].set_ylim(0,0.80)
ax[2].set_xlabel("instance threshold")
ax[2].set_ylabel("FPR")
plt.tight_layout()
return dict(precision=pr, precision_ci=pr_ci, recall=rc, recall_ci=rc_ci, fpr=fpr, fpr_ci=fpr_ci)
def gt_vs_dt_instances(self, ax=None):
"""Plots mean detected instances vs. ground truth instances with error bars.
Args:
ax (plt.Axes, optional): Axes to plot on. Defaults to None.
Returns:
plt.Axes: The axes object with the plot.
"""
df = self.dfimg
max_inst, max_xpxs, max_pxs = self.get_max_limits(df)
idx = (df.gt_instances > 0) & (df.dt_instances > 0)
if ax is None:
fig = plt.figure(dpi=100)
ax = fig.add_subplot(111)
y = df[idx].groupby("gt_instances")["dt_instances"].mean()
yerr = df[idx].groupby("gt_instances")["dt_instances"].std()
ax.errorbar(y.index, y.values, yerr.values, fmt="*")
plt.plot([0, max_inst], [0, max_inst], alpha=0.5)
plt.xlim(0, max_inst + 1)
plt.ylim(0, max_inst + 1)
ax.set_aspect(1)
plt.xlabel("gt_instances")
plt.ylabel("dt_instances")
plt.tight_layout()
return ax
def gt_vs_dt_instances_boxplot(self, ax=None):
"""Creates a boxplot of detected instances for each ground truth instance count.
Args:
ax (plt.Axes, optional): Axes to plot on. Defaults to None.
Returns:
plt.Axes: The axes object with the plot.
"""
df = self.dfimg
max_inst, max_xpxs, max_pxs = self.get_max_limits(df)
max_inst = int(max_inst)
if ax is None:
fig = plt.figure(dpi=100)
ax = fig.add_subplot(111)
ax.plot([0, max_inst + 1], [0, max_inst + 1], alpha=0.5)
x = df["gt_instances"].values.astype(int)
y = df["dt_instances"].values.astype(int)
sns.boxplot(x, y, ax=ax, width=0.5)
ax.set_xbound(0, max_inst + 1)
ax.set_ybound(0, max_inst + 1)
ax.set_aspect("equal")
ax.set_title("")
ax.set_xlabel("gt_instances")
ax.set_ylabel("dt_instances")
import matplotlib.ticker as pltticker
loc = pltticker.MultipleLocator(base=2.0)
ax.xaxis.set_major_locator(loc)
ax.yaxis.set_major_locator(loc)
return ax
def gt_vs_dt_xpxs(self):
"""Creates scatter plots comparing ground truth and detected x-pixels.
Returns:
tuple[plt.Figure, plt.Figure, plt.Figure]: Figure handles for the three generated plots.
"""
df = self.dfimg
max_inst, max_xpxs, max_pxs = self.get_max_limits(df)
idx = (df.gt_instances > 0) & (df.dt_instances > 0)
dfsub = df[idx]
fig1 = plt.figure(figsize=[10, 10], dpi=100)
ax = fig1.add_subplot(111)
sc = ax.scatter(dfsub["gt_xpxs"], dfsub["dt_xpxs"], c=dfsub["gt_instances"], cmap="viridis")
ax.set_aspect(1)
# ax = dfsub.plot(kind = 'scatter',x=,y=,c='gt_instances')
plt.plot([0, max_xpxs], [0, max_xpxs], alpha=0.5)
plt.xlim(0, max_xpxs)
plt.ylim(0, max_xpxs)
plt.xlabel("gt_xpxs")
plt.ylabel("dt_xpxs")
cbar = plt.colorbar(sc)
cbar.ax.set_ylabel("gt_instances")
plt.tight_layout()
fig2 = plt.figure(figsize=[10, 10], dpi=100)
ax = fig2.add_subplot(111)
sc = ax.scatter(dfsub["gt_xpxs"], dfsub["gt_xpxs"] - dfsub["dt_xpxs"], c=dfsub["gt_instances"], cmap="viridis")
# ax = dfsub.plot(kind = 'scatter',x=,y=,c='gt_instances')
plt.plot([0, max_xpxs], [0, 0], alpha=0.5)
plt.xlabel("gt_xpxs")
plt.ylabel("gt_xpxs-dt_xpxs")
cbar = plt.colorbar(sc)
cbar.ax.set_ylabel("gt_instances")
plt.tight_layout()
fig3 = plt.figure(dpi=100)
plt.hist(dfsub["gt_xpxs"] - dfsub["dt_xpxs"])
plt.xlabel("gt_xpxs - dt_xpxs")
plt.ylabel("B-scans")
return fig1, fig2, fig3
def gt_vs_dt_xpxs_mu(self):
"""Plots binned means of detected vs. ground truth x-pixels.
Returns:
plt.Figure: The figure handle for the plot.
"""
df = self.dfimg
max_inst, max_xpxs, max_pxs = self.get_max_limits(df)
idx = (df.gt_instances > 0) & (df.dt_instances > 0)
dfsub = df[idx]
from scipy import stats
mu_dt, bins, bnum = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["dt_xpxs"], statistic="mean", bins=10)
std_dt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["dt_xpxs"], statistic="std", bins=bins)
mu_gt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["gt_xpxs"], statistic="mean", bins=bins)
std_gt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["gt_xpxs"], statistic="std", bins=bins)
fig = plt.figure(dpi=100)
plt.errorbar(mu_gt, mu_dt, yerr=std_dt, xerr=std_gt, fmt="*")
plt.xlabel("gt_xpxs")
plt.ylabel("dt_xpxs")
plt.plot([0, max_xpxs], [0, max_xpxs], alpha=0.5)
plt.xlim(0, max_xpxs)
plt.ylim(0, max_xpxs)
plt.gca().set_aspect(1)
plt.tight_layout()
return fig
def gt_dt_fp_fn_count(self):
"""Plots histograms of false positive and false negative instance counts.
Returns:
plt.Figure: The figure handle for the plot.
"""
df = self.dfimg
fig, ax = plt.subplots(1, 2, figsize=[10, 5])
idx = (df.gt_instances == 0) & (df.dt_instances > 0)
ax[0].hist(df[idx]["dt_instances"], bins=range(1, 10))
ax[0].set_xlabel("dt instances")
ax[0].set_ylabel("B-scans")
ax[0].set_title("FP dt instance count per B-scan")
idx = (df.gt_instances > 0) & (df.dt_instances == 0)
ax[1].hist(df[idx]["gt_instances"], bins=range(1, 10))
ax[1].set_xlabel("gt instances")
ax[1].set_ylabel("B-scans")
ax[1].set_title("FN gt instance count per B-scan")
plt.tight_layout()
return fig
def avg_inst_size(self):
"""Plots histograms of the average instance size in pixels.
Compares the average size (in both total pixels and x-axis projection)
between ground truth and detected instances.
Returns:
plt.Figure: The figure handle for the plot.
"""
df = self.dfimg
max_inst, max_xpxs, max_pxs = self.get_max_limits(df)
idx = (df.gt_instances > 0) & (df.dt_instances > 0)
dfsub = df[idx]
fig = plt.figure(figsize=[10, 5])
plt.subplot(121)
bins = np.arange(0, 120, 10)
ax = (dfsub.gt_xpxs / dfsub.gt_instances).hist(bins=bins, alpha=0.5, label="gt")
ax = (dfsub.dt_xpxs / dfsub.dt_instances).hist(bins=bins, alpha=0.5, label="dt")
ax.set_xlabel("xpxs")
ax.set_ylabel("B-scans")
ax.set_title("Average size of instance")
ax.legend()
plt.subplot(122)
bins = np.arange(0, 600, 40)
ax = (dfsub.gt_pxs / dfsub.gt_instances).hist(bins=bins, alpha=0.5, label="gt")
ax = (dfsub.dt_pxs / dfsub.dt_instances).hist(bins=bins, alpha=0.5, label="dt")
ax.set_xlabel("pxs")
ax.set_ylabel("B-scans")
ax.set_title("Average size of instance")
ax.legend()
plt.tight_layout()
return fig
|