File size: 16,830 Bytes
b8597df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# Aaron Y. Lee MD MSCI (University of Washington) Copyright 2019
#
# Code ported from Markus Mayer's excellent work (https://www5.cs.fau.de/research/software/octseg/)
#
# Also thanks to who contributed to the original openVol.m in Markus's project
# Radim Kolar, Brno University, Czech Republic
# Kris Sheets, Retinal Cell Biology Lab, Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans
import array
import codecs
import datetime
import struct
from collections import OrderedDict
import numpy as np
class VolFile:
def __init__(self, filename):
"""
Parses Heyex Spectralis *.vol files.
Args:
filename (str): Path to vol file
Returns:
volFile class
"""
self.__parse_volfile(filename)
@property
def oct(self):
"""
Retrieve OCT volume as a 3D numpy array.
Returns:
3D numpy array with OCT intensities as 'uint8' array
"""
return self.wholefile["cScan"]
@property
def irslo(self):
"""
Retrieve IR SLO image as 2D numpy array
Returns:
2D numpy array with IR reflectance SLO image as 'uint8' array.
"""
return self.wholefile["sloImage"]
@property
def grid(self):
"""
Retrieve the IR SLO pixel coordinates for the B scan OCT slices
Returns:
2D numpy array with the number of b scan images in the first dimension
and x_0, y_0, x_1, y_1 defining the line of the B scan on the pixel
coordinates of the IR SLO image.
"""
wf = self.wholefile
grid = []
for bi in range(len(wf["slice-headers"])):
bscan_head = wf["slice-headers"][bi]
x_0 = int(bscan_head["startX"] / wf["header"]["scaleXSlo"])
x_1 = int(bscan_head["endX"] / wf["header"]["scaleXSlo"])
y_0 = int(bscan_head["startY"] / wf["header"]["scaleYSlo"])
y_1 = int(bscan_head["endY"] / wf["header"]["scaleYSlo"])
grid.append([x_0, y_0, x_1, y_1])
return grid
def render_ir_slo(self, filename, render_grid=False):
"""
Renders IR SLO image as a PNG file and optionally overlays grid of B scans
Args:
filename (str): filename to save IR SLO image
renderGrid (bool): True will render red lines for the location of the B scans.
Returns:
None
"""
from PIL import Image, ImageDraw
wf = self.wholefile
a = np.copy(wf["sloImage"])
if render_grid:
a = np.stack((a,) * 3, axis=-1)
a = Image.fromarray(a)
draw = ImageDraw.Draw(a)
grid = self.grid
for x_0, y_0, x_1, y_1 in grid:
draw.line((x_0, y_0, x_1, y_1), fill=(255, 0, 0), width=3)
a.save(filename)
else:
Image.fromarray(a).save(filename)
def render_oct_scans(self, filepre="oct", render_seg=False):
"""
Renders OCT images a PNG file and optionally overlays segmentation lines
Also creates a CSV file of vol file features.
Args:
filepre (str): filename prefix. OCT Images will be named as "<prefix>_001.png"
renderSeg (bool): True will render colored lines for the segmentation of the RPE, ILM, and NFL on the B scans.
Returns:
None
"""
from PIL import Image
wf = self.wholefile
for i in range(wf["cScan"].shape[0]):
a = np.copy(wf["cScan"][i])
if render_seg:
a = np.stack((a,) * 3, axis=-1)
for li in range(wf["segmentations"].shape[0]):
for x in range(wf["segmentations"].shape[2]):
a[int(wf["segmentations"][li, i, x]), x, li] = 255
Image.fromarray(a).save("%s_%03d.png" % (filepre, i))
def __parse_volfile(self, fn, parse_seg=False):
print(fn)
wholefile = OrderedDict()
decode_hex = codecs.getdecoder("hex_codec")
with open(fn, "rb") as fin:
header = OrderedDict()
header["version"] = fin.read(12)
header["octSizeX"] = struct.unpack("I", fin.read(4))[0] # lateral resolution
header["numBscan"] = struct.unpack("I", fin.read(4))[0]
header["octSizeZ"] = struct.unpack("I", fin.read(4))[0] # OCT depth
header["scaleX"] = struct.unpack("d", fin.read(8))[0]
header["distance"] = struct.unpack("d", fin.read(8))[0]
header["scaleZ"] = struct.unpack("d", fin.read(8))[0]
header["sizeXSlo"] = struct.unpack("I", fin.read(4))[0]
header["sizeYSlo"] = struct.unpack("I", fin.read(4))[0]
header["scaleXSlo"] = struct.unpack("d", fin.read(8))[0]
header["scaleYSlo"] = struct.unpack("d", fin.read(8))[0]
header["fieldSizeSlo"] = struct.unpack("I", fin.read(4))[0] # FOV in degrees
header["scanFocus"] = struct.unpack("d", fin.read(8))[0]
header["scanPos"] = fin.read(4)
header["examTime"] = struct.unpack("=q", fin.read(8))[0] / 1e7
header["examTime"] = datetime.datetime.utcfromtimestamp(
header["examTime"] - (369 * 365.25 + 4) * 24 * 60 * 60
) # needs to be checked
header["scanPattern"] = struct.unpack("I", fin.read(4))[0]
header["BscanHdrSize"] = struct.unpack("I", fin.read(4))[0]
header["ID"] = fin.read(16)
header["ReferenceID"] = fin.read(16)
header["PID"] = struct.unpack("I", fin.read(4))[0]
header["PatientID"] = fin.read(21)
header["unknown2"] = fin.read(3)
header["DOB"] = struct.unpack("d", fin.read(8))[0] - 25569
header["DOB"] = datetime.datetime.utcfromtimestamp(0) + datetime.timedelta(
seconds=header["DOB"] * 24 * 60 * 60
) # needs to be checked
header["VID"] = struct.unpack("I", fin.read(4))[0]
header["VisitID"] = fin.read(24)
header["VisitDate"] = struct.unpack("d", fin.read(8))[0] - 25569
header["VisitDate"] = datetime.datetime.utcfromtimestamp(0) + datetime.timedelta(
seconds=header["VisitDate"] * 24 * 60 * 60
) # needs to be checked
header["GridType"] = struct.unpack("I", fin.read(4))[0]
header["GridOffset"] = struct.unpack("I", fin.read(4))[0]
wholefile["header"] = header
fin.seek(2048)
u = array.array("B")
u.frombytes(fin.read(header["sizeXSlo"] * header["sizeYSlo"]))
u = np.array(u).astype("uint8").reshape((header["sizeXSlo"], header["sizeYSlo"]))
wholefile["sloImage"] = u
slo_offset = 2048 + header["sizeXSlo"] * header["sizeYSlo"]
oct_offset = header["BscanHdrSize"] + header["octSizeX"] * header["octSizeZ"] * 4
bscans = []
bscanheaders = []
bscanqualities = []
if parse_seg:
segmentations = None
for i in range(header["numBscan"]):
fin.seek(16 + slo_offset + i * oct_offset)
bscan_head = OrderedDict()
bscan_head["startX"] = struct.unpack("d", fin.read(8))[0]
bscan_head["startY"] = struct.unpack("d", fin.read(8))[0]
bscan_head["endX"] = struct.unpack("d", fin.read(8))[0]
bscan_head["endY"] = struct.unpack("d", fin.read(8))[0]
bscan_head["numSeg"] = struct.unpack("I", fin.read(4))[0]
bscan_head["offSeg"] = struct.unpack("I", fin.read(4))[0]
bscan_head["quality"] = struct.unpack("f", fin.read(4))[0]
bscan_head["shift"] = struct.unpack("I", fin.read(4))[0]
bscanheaders.append(bscan_head)
bscanqualities.append(bscan_head["quality"])
# extract OCT B scan data
fin.seek(header["BscanHdrSize"] + slo_offset + i * oct_offset)
u = array.array("f")
u.frombytes(fin.read(4 * header["octSizeX"] * header["octSizeZ"]))
u = np.array(u).reshape((header["octSizeZ"], header["octSizeX"]))
# remove out of boundary
v = struct.unpack("f", decode_hex("FFFF7F7F")[0])
u[u == v] = 0
# log normalize
u = np.log(10000 * u + 1)
u = (255.0 * (np.clip(u, 0, np.max(u)) / np.max(u))).astype("uint8")
bscans.append(u)
if parse_seg:
# extract OCT segmentations data
fin.seek(256 + slo_offset + i * oct_offset)
u = array.array("f")
u.frombytes(fin.read(4 * header["octSizeX"] * bscan_head["numSeg"]))
u = np.array(u)
print(u.shape)
u[u == v] = 0.0
if segmentations is None:
segmentations = []
for _ in range(bscan_head["numSeg"]):
segmentations.append([])
for j in range(bscan_head["numSeg"]):
segmentations[j].append(u[j * header["octSizeX"] : (j + 1) * header["octSizeX"]].tolist())
wholefile["cScan"] = np.array(bscans)
if parse_seg:
wholefile["segmentations"] = np.array(segmentations)
wholefile["slice-headers"] = bscanheaders
wholefile["average-quality"] = np.mean(bscanqualities)
self.wholefile = wholefile
import csv
from pathlib import Path, PurePath
vol_features = [
PurePath(fn).name,
wholefile["header"]["version"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["numBscan"],
wholefile["header"]["octSizeX"],
wholefile["header"]["octSizeZ"],
wholefile["header"]["distance"],
wholefile["header"]["scaleX"],
wholefile["header"]["scaleZ"],
wholefile["header"]["sizeXSlo"],
wholefile["header"]["sizeYSlo"],
wholefile["header"]["scaleXSlo"],
wholefile["header"]["scaleYSlo"],
wholefile["header"]["fieldSizeSlo"],
wholefile["header"]["scanFocus"],
wholefile["header"]["scanPos"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["examTime"],
wholefile["header"]["scanPattern"],
wholefile["header"]["BscanHdrSize"],
wholefile["header"]["ID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["ReferenceID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["PID"],
wholefile["header"]["PatientID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["DOB"],
wholefile["header"]["VID"],
wholefile["header"]["VisitID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["VisitDate"],
wholefile["header"]["GridType"],
wholefile["header"]["GridOffset"],
wholefile["average-quality"],
]
output_dir = PurePath(fn).parent
output_csv = output_dir.joinpath("vols.csv")
if not Path(output_csv).exists():
print("Creating vols.csv as it does not exist.")
with open(output_csv, "w", newline="") as file:
writer = csv.writer(file)
writer.writerow(
[
"filename",
"version",
"numBscan",
"octSizeX",
"octSizeZ",
"distance",
"scaleX",
"scaleZ",
"sizeXSlo",
"sizeYSlo",
"scaleXSlo",
"scaleYSlo",
"fieldSizeSlo",
"scanFocus",
"scanPos",
"examTime",
"scanPattern",
"BscanHdrSize",
"ID",
"ReferenceID",
"PID",
"PatientID",
"DOB",
"VID",
"VisitID",
"VisitDate",
"GridType",
"GridOffset",
"Average Quality",
]
)
with open(output_csv, "r", newline="") as file:
existing_vols = csv.reader(file)
for vol in existing_vols:
if vol[0] == PurePath(fn).name:
print("Skipping,", PurePath(fn).name, "already present in vols.csv.")
return
with open(output_csv, "a", newline="") as file:
print("Adding", PurePath(fn).name, "to vols.csv.")
writer = csv.writer(file)
writer.writerow(vol_features)
@property
def file_header(self):
"""
Retrieve vol header fields
Returns:
Dictionary with the following keys
- version: version number of vol file definition
- numBscan: number of B scan images in the volume
- octSizeX: number of pixels in the width of the OCT B scan
- octSizeZ: number of pixels in the height of the OCT B scan
- distance: unknown
- scaleX: resolution scaling factor of the width of the OCT B scan
- scaleZ: resolution scaling factor of the height of the OCT B scan
- sizeXSlo: number of pixels in the width of the IR SLO image
- sizeYSlo: number of pixels in the height of the IR SLO image
- scaleXSlo: resolution scaling factor of the width of the IR SLO image
- scaleYSlo: resolution scaling factor of the height of the IR SLO image
- fieldSizeSlo: field of view (FOV) of the retina in degrees
- scanFocus: unknown
- scanPos: Left or Right eye scanned
- examTime: Datetime of the scan (needs to be checked)
- scanPattern: unknown
- BscanHdrSize: size of B scan header in bytes
- ID: unknown
- ReferenceID
- PID: unknown
- PatientID: Patient ID string
- DOB: Date of birth
- VID: unknown
- VisitID: Visit ID string
- VisitDate: Datetime of visit (needs to be checked)
- GridType: unknown
- GridOffset: unknown
"""
return self.wholefile["header"]
def bscan_header(self, slicei):
"""
Retrieve the B Scan header information per slice.
Args:
slicei (int): index of B scan
Returns:
Dictionary with the following keys
- startX: x-coordinate for B scan on IR. (see getGrid)
- startY: y-coordinate for B scan on IR. (see getGrid)
- endX: x-coordinate for B scan on IR. (see getGrid)
- endY: y-coordinate for B scan on IR. (see getGrid)
- numSeg: 2 or 3 segmentation lines for the B scan
- quality: OCT signal quality
- shift: unknown
"""
return self.wholefile["slice-headers"][slicei]
def save_grid(self, outfn):
"""
Saves the grid coordinates mapping OCT Bscans to the IR SLO image to a text file. The text file
will be a tab-delimited file with 5 columns: The bscan number, x_0, y_0, x_1, y_1 in pixel space
scaled to the resolution of the IR SLO image.
Args:
outfn (str): location of where to output the file
Returns:
None
"""
grid = self.grid
with open(outfn, "w") as fout:
fout.write("bscan\tx_0\ty_0\tx_1\ty_1\n")
ri = 0
for r in grid:
r = [ri] + r
fout.write("%s\n" % "\t".join(map(str, r)))
ri += 1
|