_BASE_: "Base-RCNN-FPN.yaml" | |
MODEL: | |
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" | |
PIXEL_STD: [57.375, 57.120, 58.395] | |
MASK_ON: True | |
RESNETS: | |
STRIDE_IN_1X1: False # this is a C2 model | |
NUM_GROUPS: 32 | |
WIDTH_PER_GROUP: 8 | |
DEPTH: 101 | |
ROI_HEADS: | |
NUM_CLASSES: 1 | |
SCORE_THRESH_TEST: 0.001 | |
NMS_THRESH_TEST: .01 | |
INPUT: | |
MIN_SIZE_TRAIN: (496,) | |
MIN_SIZE_TEST: 496 | |
SOLVER: | |
BASE_LR: 0.02 | |
#GAMMA: 0.05 | |
#STEPS: (3000, 7000, 11000, 15000) | |
#MAX_ITER: 18000 | |
GAMMA: 0.1 | |
STEPS: (3000, 4500) | |
MAX_ITER: 6000 | |
CHECKPOINT_PERIOD: 300 | |
IMS_PER_BATCH: 14 | |
TEST: | |
DETECTIONS_PER_IMAGE: 30 # LVIS allows up to 300 | |
EVAL_PERIOD: 300 | |
DATALOADER: | |
SAMPLER_TRAIN: "RepeatFactorTrainingSampler" | |
REPEAT_THRESHOLD: 0.001 | |
NUM_WORKERS: 4 | |
# DATASETS: | |
# TRAIN: ("fold1","fold2","fold3","fold4",) | |
# TEST: ("fold5",) | |
# OUTPUT_DIR: "./output_valid_fold5" | |
# DATASETS: | |
# TRAIN: ("fold2","fold3","fold4","fold5",) | |
# TEST: ("fold1",) | |
# OUTPUT_DIR: "./output_valid_fold1" | |
# DATASETS: | |
# TRAIN: ("fold3","fold4","fold5","fold1",) | |
# TEST: ("fold2",) | |
# OUTPUT_DIR: "./output_valid_fold2" | |
# DATASETS: | |
# TRAIN: ("fold4","fold5","fold1","fold2",) | |
# TEST: ("fold3",) | |
# OUTPUT_DIR: "./output_valid_fold3" | |
# DATASETS: | |
# TRAIN: ("fold5","fold1","fold2","fold3",) | |
# TEST: ("fold4",) | |
# OUTPUT_DIR: "./output_valid_fold4" | |
#modifiying to commit again | |