""" Utiltites for analyizing and visualizing model segmentations on dataset. Yelena Bagdasarova, Scott Song """ import json import os import pickle import sys import warnings import cv2 import detectron2 import detectron2.utils.comm as comm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.engine import DefaultPredictor from detectron2.evaluation import COCOEvaluator from detectron2.utils.visualizer import Visualizer from matplotlib.backends.backend_pdf import PdfPages from PIL import Image from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from pycocotools.mask import decode from sklearn.metrics import average_precision_score, precision_recall_curve from tqdm import tqdm # current_directory = os.getcwd() # print(current_directory) plt.style.use("./scripts/ybpres.mplstyle") def grab_dataset(name): """Creates a function to load a pickled dataset by name. This function returns another function that, when called, loads a dataset from a pickle file located in the "datasets/" directory. Args: name (str): The base name of the dataset file (without extension). Returns: function: A zero-argument function that loads and returns the dataset. """ def f(): return pickle.load(open("datasets/" + name + ".pk", "rb")) return f class OutputVis: """A class to visualize model outputs and ground truth annotations.""" def __init__( self, dataset_name, cfg=None, prob_thresh=0.5, pred_mode="model", pred_file=None, has_annotations=True, draw_mode="default", ): """Initializes the OutputVis class. Args: dataset_name (str): The name of the registered Detectron2 dataset. cfg (CfgNode, optional): The Detectron2 configuration object. Required if `pred_mode` is "model". Defaults to None. prob_thresh (float, optional): The probability threshold to apply to model predictions for visualization. Defaults to 0.5. pred_mode (str, optional): The mode for getting predictions. Must be either "model" (to use a live predictor) or "file" (to load from a COCO results file). Defaults to "model". pred_file (str, optional): The path to the COCO JSON results file. Required if `pred_mode` is "file". Defaults to None. has_annotations (bool, optional): Whether the dataset has ground truth annotations to visualize. Defaults to True. draw_mode (str, optional): The drawing style for visualizations. Can be "default" (color) or "bw" (monochrome). Defaults to "default". """ self.dataset_name = dataset_name self.cfg = cfg self.prob_thresh = prob_thresh self.data = DatasetCatalog.get(dataset_name) if pred_mode == "model": self.predictor = DefaultPredictor(cfg) self._mode = "model" elif pred_mode == "file": with open(pred_file, "r") as f: self.pred_instances = json.load(f) self.instance_img_list = [p["image_id"] for p in self.pred_instances] self._mode = "file" else: sys.exit('Invalid mode. Only "model" or "file" permitted.') self.has_annotations = has_annotations self.permitted_draw_modes = ["default", "bw"] self.set_draw_mode(draw_mode) self.font_size = 16 # 28 for ARVO self.annotation_color = "r" self.scale = 3.0 def set_draw_mode(self, draw_mode): """Sets the drawing mode for visualizations. Args: draw_mode (str): The drawing style. Must be one of the permitted modes (e.g., "default", "bw"). """ if draw_mode not in self.permitted_draw_modes: sys.exit("draw_mode must be one of the following: {}".format(self.permitted_draw_modes)) self.draw_mode = draw_mode def get_ori_image(self, imgid): """Retrieves the original image for a given image ID. The image is scaled up by a factor of 3 for better visualization. Args: imgid (str): The 'image_id' from the dataset dictionary. Returns: PIL.Image: The original image. """ dat = self.get_gt_image_data(imgid) # gt im = cv2.imread(dat["file_name"]) # input to model v_gt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale) result_image = v_gt.output.get_image() # get original image img = Image.fromarray(result_image) return img def get_gt_image_data(self, imgid): """Returns the ground truth data dictionary for a given image ID. Args: imgid (str): The 'image_id' from the dataset dictionary. Returns: dict: The dataset dictionary for the specified image. """ gt_data = next(item for item in self.data if (item["image_id"] == imgid)) return gt_data def produce_gt_image(self, dat, im): """Creates an image with ground truth annotations overlaid. The visualization can be in color or monochrome depending on the draw mode. Args: dat (dict): The dataset dictionary containing ground truth annotations. im (np.ndarray): The input image in RGB format (H, W, C) as a NumPy array. Returns: PIL.Image: The image with ground truth instances overlaid. """ v_gt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale) if self.has_annotations: # ground truth boxes and masks segs = [ddict["segmentation"] for ddict in dat["annotations"]] if self.draw_mode == "bw": _bboxes = None assigned_colors = [self.annotation_color] * len(segs) else: # default behavior bboxes = [ddict["bbox"] for ddict in dat["annotations"]] _bboxes = detectron2.structures.Boxes(bboxes) _bboxes = detectron2.structures.BoxMode.convert( _bboxes.tensor, from_mode=1, to_mode=0 ) # 0= XYXY, 1 = XYWH assigned_colors = None result_image = v_gt.overlay_instances( boxes=_bboxes, masks=segs, assigned_colors=assigned_colors, alpha=1.0 ).get_image() else: result_image = v_gt.output.get_image() # get original image if no annotations img = Image.fromarray(result_image) return img def produce_model_image(self, imgid, dat, im): """Creates an image with model-predicted instances overlaid. Predictions are either generated by the model or loaded from a file, based on the configured `pred_mode`. Args: imgid (str): The 'image_id' from the dataset dictionary. dat (dict): The dataset dictionary for the image (used for height/width). im (np.ndarray): The input image in RGB format (H, W, C) as a NumPy array. Returns: PIL.Image: The image with model-predicted instances overlaid. """ v_dt = Visualizer(im, MetadataCatalog.get(self.dataset_name), scale=self.scale) v_dt._default_font_size = self.font_size # get predictions from model or file if self._mode == "model": outputs = self.predictor(im)["instances"].to("cpu") elif self._mode == "file": outputs = self.get_outputs_from_file(imgid, (dat["height"], dat["width"])) outputs = outputs[outputs.scores > self.prob_thresh] # apply probability threshold to instances if self.draw_mode == "bw": result_model = v_dt.overlay_instances( masks=outputs.pred_masks, assigned_colors=[self.annotation_color] * len(outputs), alpha=1.0 ).get_image() else: # default behavior result_model = v_dt.draw_instance_predictions(outputs).get_image() img_model = Image.fromarray(result_model) return img_model def get_image(self, imgid): """Generates both ground truth and model prediction overlay images. Args: imgid (str): The 'image_id' from the dataset dictionary. Returns: tuple[PIL.Image, PIL.Image]: A tuple containing the ground truth image and the model prediction image. """ dat = self.get_gt_image_data(imgid) # gt im = cv2.imread(dat["file_name"]) # input to model img = self.produce_gt_image(dat, im) img_model = self.produce_model_image(imgid, dat, im) return img, img_model def get_outputs_from_file(self, imgid, imgsize): """Loads and formats model predictions from a COCO results file. Converts COCO-formatted instances into a Detectron2 `Instances` object suitable for the visualizer. Args: imgid (str): The 'image_id' of the desired image. imgsize (tuple[int, int]): The (height, width) of the image. Returns: detectron2.structures.Instances: An `Instances` object containing the predictions. """ pred_boxes = [] scores = [] pred_classes = [] pred_masks = [] for i, img in enumerate(self.instance_img_list): if img == imgid: pred_boxes.append(self.pred_instances[i]["bbox"]) scores.append(self.pred_instances[i]["score"]) pred_classes.append(int(self.pred_instances[i]["category_id"])) # pred_masks_rle.append(self.pred_instances[i]['segmentation']) pred_masks.append(decode(self.pred_instances[i]["segmentation"])) _bboxes = detectron2.structures.Boxes(pred_boxes) pred_boxes = detectron2.structures.BoxMode.convert(_bboxes.tensor, from_mode=1, to_mode=0) # 0= XYXY, 1 = XYWH inst_dict = dict( pred_boxes=pred_boxes, scores=torch.tensor(np.array(scores)), pred_classes=torch.tensor(np.array(pred_classes)), pred_masks=torch.tensor(np.array(pred_masks)).to(torch.bool), ) # pred_masks_rle=pred_masks_rle) outputs = detectron2.structures.Instances(imgsize, **inst_dict) return outputs @staticmethod def height_crop_range(im, height_target=256): """Calculates a vertical crop range centered on the brightest part of an image. Args: im (np.ndarray): The input image as a NumPy array (H, W, C). height_target (int, optional): The desired height of the crop. Defaults to 256. Returns: range: A range object representing the start and end pixel rows for the crop. """ yhist = im.sum(axis=1) # integrate over width of image mu = np.average(np.arange(yhist.shape[0]), weights=yhist) h1 = int(np.floor(mu - height_target / 2)) # inclusive h2 = int(np.ceil(mu + height_target / 2)) # exclusive if h1 < 0: h1 = 0 h2 = height_target if h2 > yhist.shape[0]: h2 = yhist.shape[0] h1 = h2 - height_target return range(h1, h2) def output_to_pdf(self, imgids, outname, dfimg=None): """Exports visualizations of ground truth and model predictions to a PDF file. Each page of the PDF contains the ground truth and model prediction for one image. Args: imgids (list[str]): A list of 'image_id' values to include in the PDF. outname (str): The path and filename for the output PDF. dfimg (pd.DataFrame, optional): A DataFrame with image statistics to display on each page. Index should be `imgid`. Defaults to None. """ gtstr = "" dtstr = "" if dfimg is not None: gtcols = dfimg.columns[["gt_" in col for col in dfimg.columns]] dtcols = dfimg.columns[["dt_" in col for col in dfimg.columns]] with PdfPages(outname) as pdf: for imgid in tqdm(imgids): img, img_model = self.get_image(imgid) # pdb.set_trace() crop_range = self.height_crop_range(np.array(img.convert("L")), height_target=256 * self.scale) img = np.array(img)[crop_range] img_model = np.array(img_model)[crop_range] fig, ax = plt.subplots(2, 1, figsize=[22, 10], dpi=200) ax[0].imshow(img) ax[0].set_title(imgid + " Ground Truth") ax[0].set_axis_off() ax[1].imshow(img_model) ax[1].set_title(imgid + " Model Prediction") ax[1].set_axis_off() if dfimg is not None: # annotate with provided stats gtstr = ["{:s}={:.2f}".format(col, dfimg.loc[imgid, col]) for col in gtcols] ax[0].text(0, 0.05 * (ax[0].get_ylim()[0]), gtstr, color="white", fontsize=14) dtstr = ["{:s}={:.2f}".format(col, dfimg.loc[imgid, col]) for col in dtcols] ax[1].text(0, 0.05 * (ax[1].get_ylim()[0]), dtstr, color="white", fontsize=14) pdf.savefig(fig) plt.close(fig) def save_imgarr_to_tiff(self, imgs, outname): """Saves a list of PIL images to a multi-page TIFF file. Args: imgs (list[PIL.Image]): A list of images to save. outname (str): The path and filename for the output TIFF. """ if len(imgs) > 1: imgs[0].save(outname, dpi=(400, 400), tags="", compression=None, save_all=True, append_images=imgs[1:]) else: imgs[0].save(outname) def output_ori_to_tiff(self, imgids, outname): """Saves the original images for a list of IDs to a multi-page TIFF. Args: imgids (list[str]): A list of 'image_id' values. outname (str): The path and filename for the output TIFF. """ imgs = [] for imgid in tqdm(imgids): img_ori = self.get_ori_image(imgid) # PIL Image imgs.append(img_ori) self.save_imgarr_to_tiff(imgs, outname) def output_pred_to_tiff(self, imgids, outname, pred_only=False): """Saves model prediction overlays for a list of IDs to a multi-page TIFF. Args: imgids (list[str]): A list of 'image_id' values. outname (str): The path and filename for the output TIFF. pred_only (bool, optional): If True, overlays predictions on a black background instead of the original image. Defaults to False. """ imgs = self.output_pred_to_list(imgids, pred_only) self.save_imgarr_to_tiff(imgs, outname) def output_pred_to_list(self, imgids, pred_only=False): """Generates a list of images with model predictions overlaid. Args: imgids (list[str]): A list of 'image_id' values. pred_only (bool, optional): If True, overlays predictions on a black background. Defaults to False. Returns: list[PIL.Image]: A list of the generated visualization images. """ imgs = [] for imgid in tqdm(imgids): dat = self.get_gt_image_data(imgid) # gt if pred_only: im = np.zeros((dat["height"], dat["width"], 3)) # blank image for overlay assert ( self._mode == "file" ), 'pred_mode must be "file" when pred_only flage is set to True.' # fix this later else: im = cv2.imread(dat["file_name"]) # input to model img_dt = self.produce_model_image(imgid, dat, im) imgs.append(img_dt) return imgs def output_all_to_tiff(self, imgids, outname): """Saves a combined visualization (original, GT, prediction) to a TIFF. For each image ID, it creates a single composite image by concatenating the original, ground truth overlay, and model prediction overlay, then saves them to a multi-page TIFF. Args: imgids (list[str]): A list of 'image_id' values. outname (str): The path and filename for the output TIFF. """ imgs = [] for imgid in tqdm(imgids): img_gt, img_dt = self.get_image(imgid) img_ori = self.get_ori_image(imgid) hcrange = list(self.height_crop_range(np.array(img_ori.convert("L")), height_target=256 * self.scale)) img_result = Image.fromarray( np.concatenate( ( np.array(img_ori.convert("RGB"))[hcrange, :], np.array(img_gt)[hcrange, :], np.array(img_dt)[hcrange], ) ) ) imgs.append(img_result) self.save_imgarr_to_tiff(imgs, outname) def get_enface_dt(self, grp, scan_height, scan_width, scan_spacing): """Generates an en-face view of model predictions for a scan volume. Args: grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid. scan_height (int): The height of a single scan image in pixels. scan_width (int): The width of a single scan image in pixels. scan_spacing (float): The spacing between scan centers in pixels. Returns: np.ndarray: An en-face image of the model predictions. """ grp = grp.sort_index() nscans = len(grp) enface_height = int(np.ceil((nscans - 1) * scan_spacing)) enface = np.zeros((enface_height, scan_width, 3), dtype=int) for i, imgid in enumerate(grp.index): pos = int(np.clip(np.floor(scan_spacing * i), 0, scan_width - 1)) # vertical enface position outputs = self.get_outputs_from_file(imgid, (scan_height, scan_width)) outputs = outputs[outputs.scores > self.prob_thresh] instances = outputs.pred_boxes[:, (0, 2)].round().clip(0, scan_width - 1).to(np.int) for inst in instances: try: enface[max(pos - 4, 0) : min(pos + 4, scan_width - 1), inst[0] : inst[1]] = np.array( [255, 255, 255] ) # random_color(rgb = True) except IndexError: print(pos, inst[0], inst[1]) return enface def get_enface_gt(self, grp, scan_height, scan_width, scan_spacing): """Generates an en-face view of ground truth annotations for a scan volume. Args: grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid. scan_height (int): The height of a single scan image in pixels. scan_width (int): The width of a single scan image in pixels. scan_spacing (float): The spacing between scan centers in pixels. Returns: np.ndarray: An en-face image of the ground truth annotations. """ grp = grp.sort_index() nscans = len(grp) enface_height = int(np.ceil((nscans - 1) * scan_spacing)) enface = np.zeros((enface_height, scan_width, 3), dtype=int) if not self.has_annotations: enface[:, :] = np.array([100, 100, 100]) else: # minx = scan_width for i, imgid in enumerate(grp.index): pos = int(np.clip(np.floor(scan_spacing * i), 0, scan_width - 1)) instances = self.get_gt_image_data(imgid)["annotations"] for inst in instances: x1 = inst["bbox"][0] # minx = min(minx,x1) x2 = x1 + inst["bbox"][2] try: enface[max(pos - 4, 0) : min(pos + 4, scan_width - 1), x1:x2] = np.array( [255, 255, 255] ) # random_color(rgb = True) except IndexError: print(pos, x1, x2) return enface def compare_enface(self, grp, name, scan_height, scan_width, scan_spacing): """Creates a figure comparing the en-face views of predictions and ground truth. Args: grp (pd.DataFrame): DataFrame for a single scan volume, indexed by imgid. name (str): The name/ID of the scan volume for the plot title. scan_height (int): The height of a single scan image in pixels. scan_width (int): The width of a single scan image in pixels. scan_spacing (float): The spacing between scan centers in pixels. Returns: tuple[plt.Figure, np.ndarray]: A tuple containing the figure and axes objects. """ fig, ax = plt.subplots(1, 2, figsize=[18, 9], dpi=120) enface = self.get_enface_dt(grp, scan_height, scan_width, scan_spacing) ax[0].imshow(enface) ax[0].set_title(str(name) + " DT") ax[0].set_aspect("equal") enface = self.get_enface_gt(grp, scan_height, scan_width, scan_spacing) ax[1].imshow(enface) ax[1].set_title(str(name) + " GT") ax[1].set_aspect("equal") return fig, ax def wilson_ci(p, n, z): """Calculates the Wilson score interval for a binomial proportion. Args: p (float): The observed proportion of successes. n (int): The total number of trials. z (float): The z-score for the desired confidence level (e.g., 1.96 for 95%). Returns: tuple[float, float]: A tuple containing the lower and upper bounds of the confidence interval. """ if p < 0 or p > 1 or n == 0: if p < 0 or p > 1: warnings.warn(f"The value of proportion {p} must be in the range [0,1]. Returning identity for CIs.") else: warnings.warn(f"The number of counts {n} must be above zero. Returning identity for CIs.") return (p, p) sym = z * (p * (1 - p) / n + z * z / 4 / n / n) ** 0.5 asym = p + z * z / 2 / n fact = 1 / (1 + z * z / n) upper = fact * (asym + sym) lower = fact * (asym - sym) return (lower, upper) class EvaluateClass(COCOEvaluator): """A custom evaluation class extending COCOEvaluator for detailed analysis.""" def __init__(self, dataset_name, output_dir, prob_thresh=0.5, iou_thresh=0.1, evalsuper=True): """Initializes the custom evaluator. Args: dataset_name (str): The name of the registered Detectron2 dataset. output_dir (str): Directory to store temporary evaluation files. prob_thresh (float, optional): Probability threshold for calculating precision, recall, and FPR. Defaults to 0.5. iou_thresh (float, optional): IoU threshold for defining a true positive. Defaults to 0.1. evalsuper (bool, optional): If True, run the parent COCOEvaluator's evaluate method to generate standard COCO metrics. Defaults to True. """ super().__init__(dataset_name, tasks={"bbox", "segm"}, output_dir=output_dir) self.dataset_name = dataset_name self.mycoco = None # pycocotools.cocoEval instance self.cocoDt = None self.cocoGt = None self.evalsuper = evalsuper # if True, run COCOEvaluator.evaluate() when self.evaluate is run self.prob_thresh = prob_thresh # instance probabilty threshold for scalars (precision,recall,fpr for scans) self.iou_thresh = iou_thresh # iou threshold for defining precision,recall self.pr = None self.rc = None self.fpr = None def reset(self): """Resets the evaluator's state for a new evaluation run.""" super().reset() self.mycoco = None def process(self, inputs, outputs): """Processes a batch of inputs and outputs from the model. This method is called by the evaluation loop for each batch. Args: inputs (list[dict]): A list of dataset dictionaries. outputs (list[dict]): A list of model output dictionaries. """ super().process(inputs, outputs) def evaluate(self): """Runs the evaluation and calculates detailed performance metrics. This method orchestrates the COCO evaluation, calculates precision-recall curves, and other custom metrics. Returns: tuple[float, float]: The precision and recall at the specified `prob_thresh` and `iou_thresh`. """ if self.evalsuper: _ = super().evaluate() # this call populates coco_instances_results.json comm.synchronize() if not comm.is_main_process(): return () self.cocoGt = COCO( os.path.join(self._output_dir, self.dataset_name + "_coco_format.json") ) # produced when super is initialized self.cocoDt = self.cocoGt.loadRes( os.path.join(self._output_dir, "coco_instances_results.json") ) # load detector results self.mycoco = COCOeval(self.cocoGt, self.cocoDt, iouType="segm") self.num_images = len(self.mycoco.params.imgIds) print("Calculated metrics for {} images".format(self.num_images)) self.mycoco.params.iouThrs = np.arange(0.10, 0.6, 0.1) self.mycoco.params.maxDets = [100] self.mycoco.params.areaRng = [[0, 10000000000.0]] self.mycoco.evaluate() self.mycoco.accumulate() self.pr = self.mycoco.eval["precision"][ :, :, 0, 0, 0 # iouthresh # recall level # catagory # area range ] # max detections per image self.rc = self.mycoco.params.recThrs self.iou = self.mycoco.params.iouThrs self.scores = self.mycoco.eval["scores"][:, :, 0, 0, 0] # unreliable if GT has no instances p, r = self.get_precision_recall() return p, r def plot_pr_curve(self, ax=None): """Plots precision-recall curves for various IoU thresholds. Args: ax (plt.Axes, optional): A matplotlib axes object to plot on. If None, a new figure and axes are created. """ if ax is None: fig, ax = plt.subplots(1, 1) for i in range(len(self.iou)): ax.plot(self.rc, self.pr[i], label="{:.2}".format(self.iou[i])) ax.set_xlabel("Recall") ax.set_ylabel("Precision") ax.set_title("") ax.legend(title="IoU") def plot_recall_vs_prob(self): """Plots model score thresholds versus recall for various IoU thresholds.""" plt.figure() for i in range(len(self.iou)): plt.plot(self.rc, self.scores[i], label="{:.2}".format(self.iou[i])) plt.ylabel("Model probability") plt.xlabel("Recall") plt.legend(title="IoU") def get_precision_recall(self): """Gets the precision and recall for the configured IoU and probability thresholds. Returns: tuple[float, float]: The calculated precision and recall. """ iou_idx, rc_idx = self._find_iou_rc_inds() precision = self.pr[iou_idx, rc_idx] recall = self.rc[rc_idx] return precision, recall def _calculate_fpr_matrix(self): """(Private) Calculates the false positive rate matrix across all IoU and recall thresholds.""" # FP rate, 1 RPD in image = FP if (self.scores.min() == -1) and (self.scores.max() == -1): print( "WARNING: Scores for all iou thresholds and all recall levels are not defined. " "This can arise if ground truth annotations contain no instances. Leaving fpr matrix as None" ) self.fpr = None return fpr = np.zeros((len(self.iou), len(self.rc))) for i in range(len(self.iou)): for j, s in enumerate(self.scores[i]): # j -> recall level, s -> corresponding score ng = 0 # number of negative images fp = 0 # number of false positives images for el in self.mycoco.evalImgs: if el is None: # no predictions, no gts ng = ng + 1 elif len(el["gtIds"]) == 0: # some predictions and no gts ng = ng + 1 if ( np.array(el["dtScores"]) > s ).sum() > 0: # if at least one score over threshold for recall level fp = fp + 1 # count as FP else: continue fpr[i, j] = fp / ng self.fpr = fpr def _calculate_fpr(self): """(Private) Calculates FPR for a single probability threshold. This is an alternate calculation used when the main FPR matrix cannot be computed (e.g., no positive ground truth instances). Returns: float: The calculated false positive rate. """ print("Using alternate calculation for fpr at instance score threshold of {}".format(self.prob_thresh)) ng = 0 # number of negative images fp = 0 # number of false positives images for el in self.mycoco.evalImgs: if el is None: # no predictions, no gts ng = ng + 1 elif len(el["gtIds"]) == 0: # some predictions and no gts ng = ng + 1 if ( np.array(el["dtScores"]) > self.prob_thresh ).sum() > 0: # if at least one score over threshold for recall level fp = fp + 1 # count as FP else: # gt has instances continue return fp / (ng + 1e-5) def _find_iou_rc_inds(self): """(Private) Finds the indices corresponding to the configured IoU and probability thresholds. Returns: tuple[int, int]: The index for the IoU threshold and the index for the recall level. """ try: iou_idx = np.argwhere(self.iou == self.iou_thresh)[0][0] # first instance of except IndexError: print( "iou threshold {} not found in mycoco.params.iouThrs {}".format( self.iou_thresh, self.mycoco.params.iouThrs ) ) exit(1) # test above for out of bounds inds = np.argwhere(self.scores[iou_idx] >= self.prob_thresh) if len(inds) > 0: rc_idx = inds[-1][0] # get recall index corresponding to prob_thresh else: rc_idx = 0 return iou_idx, rc_idx def get_fpr(self): """Gets the false positive rate for the configured thresholds. Returns: float: The calculated false positive rate. Returns -1 if it cannot be computed. """ if self.fpr is None: self._calculate_fpr_matrix() if self.fpr is not None: iou_idx, rc_idx = self._find_iou_rc_inds() fpr = self.fpr[iou_idx, rc_idx] elif len(self.mycoco.cocoGt.anns) == 0: fpr = self._calculate_fpr() else: fpr = -1 return fpr def summarize_scalars(self): # for pretty printing """Generates a dictionary summarizing key performance metrics with confidence intervals. Returns: dict: A dictionary containing precision, recall, F1-score, FPR, and their confidence intervals. """ p, r = self.get_precision_recall() f1 = 2 * (p * r) / (p + r) fpr = self.get_fpr() # Confidence intervals z = 1.96 # 95% Gaussian # instance count inst_cnt = self.count_instances() n_r = inst_cnt["gt_instances"] n_p = inst_cnt["dt_instances"] n_fpr = inst_cnt["gt_neg_scans"] def stat_ci(p, n, z): return z * np.sqrt(p * (1 - p) / n) r_ci = wilson_ci(r, n_r, z) p_ci = wilson_ci(p, n_p, z) fpr_ci = wilson_ci(fpr, n_fpr, z) # propogate errors for f1 int_r = stat_ci(r, n_r, z) int_p = stat_ci(p, n_p, z) int_f1 = (f1) * np.sqrt(int_r**2 * (1 / r - 1 / (p + r)) ** 2 + int_p**2 * (1 / p - 1 / (p + r)) ** 2) f1_ci = (f1 - int_f1, f1 + int_f1) dd = dict( dataset=self.dataset_name, precision=float(p), precision_ci=p_ci, recall=float(r), recall_ci=r_ci, f1=float(f1), f1_ci=f1_ci, fpr=float(fpr), fpr_ci=fpr_ci, iou=self.iou_thresh, probability=self.prob_thresh, ) return dd def count_instances(self): """Counts ground truth and detected instances across the dataset. Returns: dict: A dictionary with counts for 'gt_instances', 'dt_instances', and 'gt_neg_scans' (images with no GT instances). """ gt_inst = 0 dt_inst = 0 gt_neg_scans = 0 for _, val in self.cocoGt.imgs.items(): imgid = val["id"] # Gt instances annids_gt = self.cocoGt.getAnnIds([imgid]) anns_gt = self.cocoGt.loadAnns(annids_gt) gt_inst += len(anns_gt) if len(anns_gt) == 0: gt_neg_scans += 1 # Dt instances annids_dt = self.cocoDt.getAnnIds([imgid]) anns_dt = self.cocoDt.loadAnns(annids_dt) anns_dt = [ann for ann in anns_dt if ann["score"] > self.prob_thresh] dt_inst += len(anns_dt) return dict(gt_instances=gt_inst, dt_instances=dt_inst, gt_neg_scans=gt_neg_scans) class CreatePlotsRPD: """A class to create various plots for analyzing RPD (Reticular Pseudodrusen) data.""" def __init__(self, dfimg): """Initializes the plotting class with image-level data. Args: dfimg (pd.DataFrame): A DataFrame where each row corresponds to an image, containing counts for ground truth and detected instances and pixels. Must include a 'volID' column. """ self.dfimg = dfimg self.dfvol = self.dfimg.groupby(["volID"])[ ["gt_instances", "gt_pxs", "gt_xpxs", "dt_instances", "dt_pxs", "dt_xpxs"] ].sum() @classmethod def initfromcoco(cls, mycoco, prob_thresh): """Initializes the class from a COCOeval object. Args: mycoco (COCOeval): An evaluated COCOeval object. prob_thresh (float): The probability threshold to apply to detections. Returns: CreatePlotsRPD: An instance of the class. """ df = pd.DataFrame( index=mycoco.cocoGt.imgs.keys(), columns=["gt_instances", "gt_pxs", "gt_xpxs", "dt_instances", "dt_pxs", "dt_xpxs"], dtype=np.uint64, ) for key, val in mycoco.cocoGt.imgs.items(): imgid = val["id"] # Gt instances annids_gt = mycoco.cocoGt.getAnnIds([imgid]) anns_gt = mycoco.cocoGt.loadAnns(annids_gt) inst_gt = [mycoco.cocoGt.annToMask(ann).sum() for ann in anns_gt] xproj_gt = [(mycoco.cocoGt.annToMask(ann).sum(axis=0) > 0).astype("uint8").sum() for ann in anns_gt] # Dt instances annids_dt = mycoco.cocoDt.getAnnIds([imgid]) anns_dt = mycoco.cocoDt.loadAnns(annids_dt) anns_dt = [ann for ann in anns_dt if ann["score"] > prob_thresh] inst_dt = [mycoco.cocoDt.annToMask(ann).sum() for ann in anns_dt] xproj_dt = [(mycoco.cocoDt.annToMask(ann).sum(axis=0) > 0).astype("uint8").sum() for ann in anns_dt] dat = [ len(inst_gt), np.array(inst_gt).sum(), np.array(xproj_gt).sum(), len(inst_dt), np.array(inst_dt).sum(), np.array(xproj_dt).sum(), ] df.loc[key] = dat newdf = pd.DataFrame( [idx.rsplit(".", 1)[0].rsplit("_", 1) for idx in df.index], columns=["volID", "scan"], index=df.index ) df = df.merge(newdf, how="inner", left_index=True, right_index=True) return cls(df) @classmethod def initfromcsv(cls, fname): """Initializes the class from a CSV file. Args: fname (str): The path to the CSV file. Returns: CreatePlotsRPD: An instance of the class. """ df = pd.read_csv(fname) return cls(df) def get_max_limits(self, df): """Calculates the maximum values for plotting limits. Args: df (pd.DataFrame): The DataFrame to analyze. Returns: tuple[int, int, int]: Max values for instances, x-pixels, and total pixels. """ max_inst = np.max([df.gt_instances.max(), df.dt_instances.max()]) max_xpxs = np.max([df.gt_xpxs.max(), df.dt_xpxs.max()]) max_pxs = np.max([df.gt_pxs.max(), df.dt_pxs.max()]) # print('Max instances:',max_inst) # print('Max xpxs:',max_xpxs) # print('Max pxs:',max_pxs) return max_inst, max_xpxs, max_pxs def vol_level_prc(self, df, gt_thresh=5, ax=None): """Plots a volume-level precision-recall curve. Args: df (pd.DataFrame): DataFrame with volume-level statistics. gt_thresh (int, optional): The minimum number of ground truth instances for a volume to be considered positive. Defaults to 5. ax (plt.Axes, optional): Axes to plot on. Defaults to None. Returns: tuple[float, tuple]: The average precision and the PR curve data. """ prc = precision_recall_curve(df.gt_instances >= gt_thresh, df.dt_instances) if ax is None: fig, ax = plt.subplots(1, 1) ax.plot(prc[1], prc[0]) ax.set_xlabel("RPD Volume Recall") ax.set_ylabel("RPD Volume Precision") ap = average_precision_score(df.gt_instances >= gt_thresh, df.dt_instances) return ap, prc def plot_img_level_instance_thresholding(self, df, inst): """Plots P/R/FPR as a function of the instance count threshold. Args: df (pd.DataFrame): DataFrame with image-level statistics. inst (list[int]): A list of instance count thresholds to evaluate. Returns: tuple[np.ndarray, np.ndarray, np.ndarray]: Arrays for precision, recall, and FPR at each threshold. """ rc = np.zeros((len(inst),)) pr = np.zeros((len(inst),)) fpr = np.zeros((len(inst),)) fig, ax = plt.subplots(1, 3, figsize=[15, 5]) for i, dt_thresh in enumerate(inst): gt = df.gt_instances > dt_thresh dt = df.dt_instances > dt_thresh rc[i] = (gt & dt).sum() / gt.sum() pr[i] = (gt & dt).sum() / dt.sum() fpr[i] = ((~gt) & (dt)).sum() / ((~gt).sum()) ax[1].plot(inst, pr) ax[1].set_ylim(0.45, 1.01) ax[1].set_xlabel("instance threshold") ax[1].set_ylabel("Precision") ax[0].plot(inst, rc) ax[0].set_ylim(0.45, 1.01) ax[0].set_ylabel("Recall") ax[0].set_xlabel("instance threshold") ax[2].plot(inst, fpr) ax[2].set_ylim(0, 0.80) ax[2].set_xlabel("instance threshold") ax[2].set_ylabel("FPR") plt.tight_layout() return pr, rc, fpr def plot_img_level_instance_thresholding2(self, df, inst, gt_thresh, plot=True): """Plots P/R/FPR vs. instance threshold with confidence intervals. Args: df (pd.DataFrame): DataFrame with image-level statistics. inst (list[int]): A list of instance count thresholds to evaluate. gt_thresh (int): The ground truth instance threshold. plot (bool, optional): Whether to generate a plot. Defaults to True. Returns: dict: A dictionary containing arrays for P/R/FPR and their CIs. """ rc = np.zeros((len(inst),)) pr = np.zeros((len(inst),)) fpr = np.zeros((len(inst),)) rc_ci = np.zeros((len(inst), 2)) pr_ci = np.zeros((len(inst), 2)) fpr_ci = np.zeros((len(inst), 2)) for i, dt_thresh in enumerate(inst): gt = df.gt_instances >= gt_thresh dt = df.dt_instances >= dt_thresh rc[i] = (gt & dt).sum() / gt.sum() pr[i] = (gt & dt).sum() / dt.sum() fpr[i] = ((~gt) & (dt)).sum() / ((~gt).sum()) rc_ci[i, :] = wilson_ci(rc[i], gt.sum(), 1.96) pr_ci[i, :] = wilson_ci(pr[i], dt.sum(), 1.96) fpr_ci[i, :] = wilson_ci(fpr[i], ((~gt).sum()), 1.96) if plot: fig, ax = plt.subplots(1, 3, figsize=[15, 5]) # ax[0].plot(rc,pr) # ax[0].set_xlabel('Recall') # ax[0].set_ylabel('Precision') ax[1].plot(inst, pr) ax[1].fill_between(inst, pr_ci[:, 0], pr_ci[:, 1], alpha=0.25) # ax[1].set_ylim(0.45,1.01) ax[1].set_xlabel("instance threshold") ax[1].set_ylabel("Precision") ax[0].plot(inst, rc) ax[0].fill_between(inst, rc_ci[:, 0], rc_ci[:, 1], alpha=0.25) # ax[0].set_ylim(0.45,1.01) ax[0].set_ylabel("Recall") ax[0].set_xlabel("instance threshold") ax[2].plot(inst, fpr) ax[2].fill_between(inst, fpr_ci[:, 0], fpr_ci[:, 1], alpha=0.25) # ax[2].set_ylim(0,0.80) ax[2].set_xlabel("instance threshold") ax[2].set_ylabel("FPR") plt.tight_layout() return dict(precision=pr, precision_ci=pr_ci, recall=rc, recall_ci=rc_ci, fpr=fpr, fpr_ci=fpr_ci) def gt_vs_dt_instances(self, ax=None): """Plots mean detected instances vs. ground truth instances with error bars. Args: ax (plt.Axes, optional): Axes to plot on. Defaults to None. Returns: plt.Axes: The axes object with the plot. """ df = self.dfimg max_inst, max_xpxs, max_pxs = self.get_max_limits(df) idx = (df.gt_instances > 0) & (df.dt_instances > 0) if ax is None: fig = plt.figure(dpi=100) ax = fig.add_subplot(111) y = df[idx].groupby("gt_instances")["dt_instances"].mean() yerr = df[idx].groupby("gt_instances")["dt_instances"].std() ax.errorbar(y.index, y.values, yerr.values, fmt="*") plt.plot([0, max_inst], [0, max_inst], alpha=0.5) plt.xlim(0, max_inst + 1) plt.ylim(0, max_inst + 1) ax.set_aspect(1) plt.xlabel("gt_instances") plt.ylabel("dt_instances") plt.tight_layout() return ax def gt_vs_dt_instances_boxplot(self, ax=None): """Creates a boxplot of detected instances for each ground truth instance count. Args: ax (plt.Axes, optional): Axes to plot on. Defaults to None. Returns: plt.Axes: The axes object with the plot. """ df = self.dfimg max_inst, max_xpxs, max_pxs = self.get_max_limits(df) max_inst = int(max_inst) if ax is None: fig = plt.figure(dpi=100) ax = fig.add_subplot(111) ax.plot([0, max_inst + 1], [0, max_inst + 1], alpha=0.5) x = df["gt_instances"].values.astype(int) y = df["dt_instances"].values.astype(int) sns.boxplot(x, y, ax=ax, width=0.5) ax.set_xbound(0, max_inst + 1) ax.set_ybound(0, max_inst + 1) ax.set_aspect("equal") ax.set_title("") ax.set_xlabel("gt_instances") ax.set_ylabel("dt_instances") import matplotlib.ticker as pltticker loc = pltticker.MultipleLocator(base=2.0) ax.xaxis.set_major_locator(loc) ax.yaxis.set_major_locator(loc) return ax def gt_vs_dt_xpxs(self): """Creates scatter plots comparing ground truth and detected x-pixels. Returns: tuple[plt.Figure, plt.Figure, plt.Figure]: Figure handles for the three generated plots. """ df = self.dfimg max_inst, max_xpxs, max_pxs = self.get_max_limits(df) idx = (df.gt_instances > 0) & (df.dt_instances > 0) dfsub = df[idx] fig1 = plt.figure(figsize=[10, 10], dpi=100) ax = fig1.add_subplot(111) sc = ax.scatter(dfsub["gt_xpxs"], dfsub["dt_xpxs"], c=dfsub["gt_instances"], cmap="viridis") ax.set_aspect(1) # ax = dfsub.plot(kind = 'scatter',x=,y=,c='gt_instances') plt.plot([0, max_xpxs], [0, max_xpxs], alpha=0.5) plt.xlim(0, max_xpxs) plt.ylim(0, max_xpxs) plt.xlabel("gt_xpxs") plt.ylabel("dt_xpxs") cbar = plt.colorbar(sc) cbar.ax.set_ylabel("gt_instances") plt.tight_layout() fig2 = plt.figure(figsize=[10, 10], dpi=100) ax = fig2.add_subplot(111) sc = ax.scatter(dfsub["gt_xpxs"], dfsub["gt_xpxs"] - dfsub["dt_xpxs"], c=dfsub["gt_instances"], cmap="viridis") # ax = dfsub.plot(kind = 'scatter',x=,y=,c='gt_instances') plt.plot([0, max_xpxs], [0, 0], alpha=0.5) plt.xlabel("gt_xpxs") plt.ylabel("gt_xpxs-dt_xpxs") cbar = plt.colorbar(sc) cbar.ax.set_ylabel("gt_instances") plt.tight_layout() fig3 = plt.figure(dpi=100) plt.hist(dfsub["gt_xpxs"] - dfsub["dt_xpxs"]) plt.xlabel("gt_xpxs - dt_xpxs") plt.ylabel("B-scans") return fig1, fig2, fig3 def gt_vs_dt_xpxs_mu(self): """Plots binned means of detected vs. ground truth x-pixels. Returns: plt.Figure: The figure handle for the plot. """ df = self.dfimg max_inst, max_xpxs, max_pxs = self.get_max_limits(df) idx = (df.gt_instances > 0) & (df.dt_instances > 0) dfsub = df[idx] from scipy import stats mu_dt, bins, bnum = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["dt_xpxs"], statistic="mean", bins=10) std_dt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["dt_xpxs"], statistic="std", bins=bins) mu_gt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["gt_xpxs"], statistic="mean", bins=bins) std_gt, _, _ = stats.binned_statistic(dfsub["gt_xpxs"], dfsub["gt_xpxs"], statistic="std", bins=bins) fig = plt.figure(dpi=100) plt.errorbar(mu_gt, mu_dt, yerr=std_dt, xerr=std_gt, fmt="*") plt.xlabel("gt_xpxs") plt.ylabel("dt_xpxs") plt.plot([0, max_xpxs], [0, max_xpxs], alpha=0.5) plt.xlim(0, max_xpxs) plt.ylim(0, max_xpxs) plt.gca().set_aspect(1) plt.tight_layout() return fig def gt_dt_fp_fn_count(self): """Plots histograms of false positive and false negative instance counts. Returns: plt.Figure: The figure handle for the plot. """ df = self.dfimg fig, ax = plt.subplots(1, 2, figsize=[10, 5]) idx = (df.gt_instances == 0) & (df.dt_instances > 0) ax[0].hist(df[idx]["dt_instances"], bins=range(1, 10)) ax[0].set_xlabel("dt instances") ax[0].set_ylabel("B-scans") ax[0].set_title("FP dt instance count per B-scan") idx = (df.gt_instances > 0) & (df.dt_instances == 0) ax[1].hist(df[idx]["gt_instances"], bins=range(1, 10)) ax[1].set_xlabel("gt instances") ax[1].set_ylabel("B-scans") ax[1].set_title("FN gt instance count per B-scan") plt.tight_layout() return fig def avg_inst_size(self): """Plots histograms of the average instance size in pixels. Compares the average size (in both total pixels and x-axis projection) between ground truth and detected instances. Returns: plt.Figure: The figure handle for the plot. """ df = self.dfimg max_inst, max_xpxs, max_pxs = self.get_max_limits(df) idx = (df.gt_instances > 0) & (df.dt_instances > 0) dfsub = df[idx] fig = plt.figure(figsize=[10, 5]) plt.subplot(121) bins = np.arange(0, 120, 10) ax = (dfsub.gt_xpxs / dfsub.gt_instances).hist(bins=bins, alpha=0.5, label="gt") ax = (dfsub.dt_xpxs / dfsub.dt_instances).hist(bins=bins, alpha=0.5, label="dt") ax.set_xlabel("xpxs") ax.set_ylabel("B-scans") ax.set_title("Average size of instance") ax.legend() plt.subplot(122) bins = np.arange(0, 600, 40) ax = (dfsub.gt_pxs / dfsub.gt_instances).hist(bins=bins, alpha=0.5, label="gt") ax = (dfsub.dt_pxs / dfsub.dt_instances).hist(bins=bins, alpha=0.5, label="dt") ax.set_xlabel("pxs") ax.set_ylabel("B-scans") ax.set_title("Average size of instance") ax.legend() plt.tight_layout() return fig