Upload spleen_deepedit_annotation version 0.5.8
Browse files- configs/metadata.json +7 -6
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
3 |
-
"version": "0.5.
|
4 |
"changelog": {
|
|
|
5 |
"0.5.7": "update to huggingface hosting",
|
6 |
"0.5.6": "use monai 1.4 and update large files",
|
7 |
"0.5.5": "update to use monai 1.3.1",
|
@@ -46,15 +47,15 @@
|
|
46 |
"nibabel": "5.2.1"
|
47 |
},
|
48 |
"supported_apps": {},
|
49 |
-
"name": "Spleen DeepEdit
|
50 |
-
"task": "
|
51 |
-
"description": "
|
52 |
"authors": "MONAI team",
|
53 |
"copyright": "Copyright (c) MONAI Consortium",
|
54 |
"data_source": "Task09_Spleen.tar from http://medicaldecathlon.com/",
|
55 |
"data_type": "nibabel",
|
56 |
-
"image_classes": "
|
57 |
-
"label_classes": "
|
58 |
"pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
|
59 |
"eval_metrics": {
|
60 |
"mean_dice": 0.97
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
3 |
+
"version": "0.5.8",
|
4 |
"changelog": {
|
5 |
+
"0.5.8": "enhance metadata with improved descriptions",
|
6 |
"0.5.7": "update to huggingface hosting",
|
7 |
"0.5.6": "use monai 1.4 and update large files",
|
8 |
"0.5.5": "update to use monai 1.3.1",
|
|
|
47 |
"nibabel": "5.2.1"
|
48 |
},
|
49 |
"supported_apps": {},
|
50 |
+
"name": "Spleen DeepEdit Interactive Segmentation",
|
51 |
+
"task": "Interactive Spleen Segmentation in CT Images with Point-based Guidance",
|
52 |
+
"description": "An interactive 3D segmentation model that processes 128x128x128 pixel patches from CT scans to segment the spleen. The model incorporates user-provided point annotations through the DeepEdit framework. It accepts positive and negative click inputs to refine segmentation boundaries in real-time.",
|
53 |
"authors": "MONAI team",
|
54 |
"copyright": "Copyright (c) MONAI Consortium",
|
55 |
"data_source": "Task09_Spleen.tar from http://medicaldecathlon.com/",
|
56 |
"data_type": "nibabel",
|
57 |
+
"image_classes": "Three channel input: channel 0: CT image scaled to [0, 1], channels 1-2: positive and negative click maps",
|
58 |
+
"label_classes": "Single channel binary mask: 1: spleen, 0: background",
|
59 |
"pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
|
60 |
"eval_metrics": {
|
61 |
"mean_dice": 0.97
|