AlanRobotics commited on
Commit
1a1ed0d
·
verified ·
1 Parent(s): 01f993f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -195
README.md CHANGED
@@ -1,199 +1,116 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - ru
5
+ - en
6
+ pipeline_tag: text-generation
7
  ---
8
 
9
+ # Cotype-Nano🤖
10
+
11
+ MTSAIR/Cotype-Nano это легковесный ИИ на основе meta-llama/Llama-3.2-1B, разработанный для выполнения задач с минимальными ресурсами. Он оптимизирован для быстрого и эффективного взаимодействия с пользователями, обеспечивая высокую производительность даже в условиях ограниченных ресурсов.*
12
+
13
+ Cotype Nano is a lightweight AI based on meta-llama/Llama-3.2-1B, designed to perform tasks with minimal resources. It is optimized for fast and efficient interaction with users, providing high performance even under resource-constrained conditions.
14
+
15
+ ### Inference with vLLM
16
+ ```sh
17
+ python3 -m vllm.entrypoints.openai.api_server --model MTSAIR/Cotype-Nano --port 8000
18
+ ```
19
+
20
+ ### Recommended generation parameters and system prompt
21
+ ```python
22
+ import openai
23
+ import pandas as pd
24
+ from tqdm import tqdm
25
+
26
+ openai.api_key = 'xxx'
27
+
28
+ endpoint = 'http://localhost:8000/v1'
29
+ model = 'MTSAIR/Cotype-Nano'
30
+ openai.api_base = endpoint
31
+
32
+ response = openai.ChatCompletion.create(
33
+ model=model,
34
+ temperature=0.2, # 0.0 is also allowed
35
+ frequency_penalty=0.0,
36
+ max_tokens=2048,
37
+ top_p=0.9, # 0.1 is also allowed
38
+ messages=[
39
+ {"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."},
40
+ {"role": "user", "content": "Как мне обучить модель meta-llama/Llama-3.2-1B с помощью библиотеки transformers?"}
41
+ ]
42
+ )
43
+
44
+ answer = response["choices"][0]["message"]["content"]
45
+ print(answer)
46
+ ```
47
+
48
+ ### Inference with Huggingface
49
+ ```python
50
+ from transformers import pipeline
51
+
52
+ pipe = pipeline("text-generation", model="MTSAIR/Cotype-Nano", device="cuda")
53
+
54
+ messages = [
55
+ {"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."},
56
+ {"role": "user", "content": "Расскажи мне про ИИ"},
57
+ ]
58
+
59
+ res = pipe(messages, max_length=1024)
60
+ print(res[0]['generated_text'][-1]['content'])
61
+ ```
62
+
63
+
64
+ ## Example request
65
+
66
+ **Request:** Напиши простой сервер на фастапи
67
+
68
+
69
+ #### Cotype-Nano response:
70
+ > Фастапи (FastAPI) — это современный фреймворк для создания API с Python, который обеспечивает высокую производительность и удобство. Он основан на стандартных типах Python и использует декораторы для определения поведения функций.
71
+ >
72
+ > Ниже приведен пример простого сервера на FastAPI с эндпоинтом `test`.
73
+ >
74
+ > ```python
75
+ > # Импортируем модуль FastAPI и утилиту ASGI
76
+ > from fastapi import FastAPI
77
+ >
78
+ > # Создаем экземпляр приложения
79
+ > app = FastAPI()
80
+ >
81
+ > # Определяем эндпоинт '/test'
82
+ > @app.get("/test")
83
+ > async def read_test():
84
+ > # Возвращаем текст "Hello World!"
85
+ > return {"message": "Hello World!"}
86
+ > ```
87
+ >
88
+ > Чтобы запустить этот сервер, вам нужно будет выполнить следующие шаги:
89
+ >
90
+ > 1. Установите FastAPI, если он еще не установлен, используя `pip install fastapi`.
91
+ > 2. Создайте файл, например `main.py`, и вставьте в него приведенный выше код.
92
+ > 3. Запустите сервер, используя команду `uvicorn main:app --reload`, где `main` — это имя вашего файла, а `app` — это имя модуля, который вы импортировали. Команда `--reload` позволяет серверу автоматически перезагружаться при изменении кода.
93
+ >
94
+ > После запуска сервера вы сможете обращаться к эндпоинту `/test` через браузер или с помощью инструментов, таких как `curl` или Postman, используя следующий URL:
95
+ >
96
+ > ```
97
+ > http://127.0.0.1:8000/test
98
+ > ```
99
+ >
100
+ > Вы должны увидеть ответ в формате JSON с текстом "Hello World!", который указывает на то, что серв��р успешно обрабатывает запрос.
101
+
102
+ ### Training process
103
+
104
+ The model was trained in two stages. In the first stage, MLP layers were trained on mathematics and code. In the second stage, the entire model was trained on internal and open synthetic instructional datasets.
105
+
106
+ ### ru-llm-arena: **21.3** (local measurement)
107
+
108
+ | **Model** | **Score** | **95% CI** | **Avg Tokens** |
109
+ | ------------------------------------------- | --------- | --------------- | -------------- |
110
+ | **MTSAIR/Cotype-Nano** | **29.4** | **+1.7 / -1.6** | **616** |
111
+ | storm-7b | 20.62 | +2.0 / -1.6 | 419.32 |
112
+ | neural-chat-7b-v3-3 | 19.04 | +2.0 / -1.7 | 927.21 |
113
+ | Vikhrmodels-Vikhr-Llama-3.2-1B-instruct | 19.04 | +1.3 / -1.6 | 958.63 |
114
+ | gigachat_lite | 17.2 | +1.4 / -1.4 | 276.81 |
115
+ | Vikhrmodels-vikhr-qwen-1.5b-it | 13.19 | +1.4 / -1.6 | 2495.38 |
116
+ | meta-llama-Llama-3.2-1B-Instruct | 4.04 | +0.8 / -0.6 | 1240.53 |