AlanRobotics
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,116 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
---
|
8 |
|
9 |
+
# Cotype-Nano🤖
|
10 |
+
|
11 |
+
MTSAIR/Cotype-Nano – это легковесный ИИ на основе meta-llama/Llama-3.2-1B, разработанный для выполнения задач с минимальными ресурсами. Он оптимизирован для быстрого и эффективного взаимодействия с пользователями, обеспечивая высокую производительность даже в условиях ограниченных ресурсов.*
|
12 |
+
|
13 |
+
Cotype Nano is a lightweight AI based on meta-llama/Llama-3.2-1B, designed to perform tasks with minimal resources. It is optimized for fast and efficient interaction with users, providing high performance even under resource-constrained conditions.
|
14 |
+
|
15 |
+
### Inference with vLLM
|
16 |
+
```sh
|
17 |
+
python3 -m vllm.entrypoints.openai.api_server --model MTSAIR/Cotype-Nano --port 8000
|
18 |
+
```
|
19 |
+
|
20 |
+
### Recommended generation parameters and system prompt
|
21 |
+
```python
|
22 |
+
import openai
|
23 |
+
import pandas as pd
|
24 |
+
from tqdm import tqdm
|
25 |
+
|
26 |
+
openai.api_key = 'xxx'
|
27 |
+
|
28 |
+
endpoint = 'http://localhost:8000/v1'
|
29 |
+
model = 'MTSAIR/Cotype-Nano'
|
30 |
+
openai.api_base = endpoint
|
31 |
+
|
32 |
+
response = openai.ChatCompletion.create(
|
33 |
+
model=model,
|
34 |
+
temperature=0.2, # 0.0 is also allowed
|
35 |
+
frequency_penalty=0.0,
|
36 |
+
max_tokens=2048,
|
37 |
+
top_p=0.9, # 0.1 is also allowed
|
38 |
+
messages=[
|
39 |
+
{"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."},
|
40 |
+
{"role": "user", "content": "Как мне обучить модель meta-llama/Llama-3.2-1B с помощью библиотеки transformers?"}
|
41 |
+
]
|
42 |
+
)
|
43 |
+
|
44 |
+
answer = response["choices"][0]["message"]["content"]
|
45 |
+
print(answer)
|
46 |
+
```
|
47 |
+
|
48 |
+
### Inference with Huggingface
|
49 |
+
```python
|
50 |
+
from transformers import pipeline
|
51 |
+
|
52 |
+
pipe = pipeline("text-generation", model="MTSAIR/Cotype-Nano", device="cuda")
|
53 |
+
|
54 |
+
messages = [
|
55 |
+
{"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."},
|
56 |
+
{"role": "user", "content": "Расскажи мне про ИИ"},
|
57 |
+
]
|
58 |
+
|
59 |
+
res = pipe(messages, max_length=1024)
|
60 |
+
print(res[0]['generated_text'][-1]['content'])
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
## Example request
|
65 |
+
|
66 |
+
**Request:** Напиши простой сервер на фастапи
|
67 |
+
|
68 |
+
|
69 |
+
#### Cotype-Nano response:
|
70 |
+
> Фастапи (FastAPI) — это современный фреймворк для создания API с Python, который обеспечивает высокую производительность и удобство. Он основан на стандартных типах Python и использует декораторы для определения поведения функций.
|
71 |
+
>
|
72 |
+
> Ниже приведен пример простого сервера на FastAPI с эндпоинтом `test`.
|
73 |
+
>
|
74 |
+
> ```python
|
75 |
+
> # Импортируем модуль FastAPI и утилиту ASGI
|
76 |
+
> from fastapi import FastAPI
|
77 |
+
>
|
78 |
+
> # Создаем экземпляр приложения
|
79 |
+
> app = FastAPI()
|
80 |
+
>
|
81 |
+
> # Определяем эндпоинт '/test'
|
82 |
+
> @app.get("/test")
|
83 |
+
> async def read_test():
|
84 |
+
> # Возвращаем текст "Hello World!"
|
85 |
+
> return {"message": "Hello World!"}
|
86 |
+
> ```
|
87 |
+
>
|
88 |
+
> Чтобы запустить этот сервер, вам нужно будет выполнить следующие шаги:
|
89 |
+
>
|
90 |
+
> 1. Установите FastAPI, если он еще не установлен, используя `pip install fastapi`.
|
91 |
+
> 2. Создайте файл, например `main.py`, и вставьте в него приведенный выше код.
|
92 |
+
> 3. Запустите сервер, используя команду `uvicorn main:app --reload`, где `main` — это имя вашего файла, а `app` — это имя модуля, который вы импортировали. Команда `--reload` позволяет серверу автоматически перезагружаться при изменении кода.
|
93 |
+
>
|
94 |
+
> После запуска сервера вы сможете обращаться к эндпоинту `/test` через браузер или с помощью инструментов, таких как `curl` или Postman, используя следующий URL:
|
95 |
+
>
|
96 |
+
> ```
|
97 |
+
> http://127.0.0.1:8000/test
|
98 |
+
> ```
|
99 |
+
>
|
100 |
+
> Вы должны увидеть ответ в формате JSON с текстом "Hello World!", который указывает на то, что серв��р успешно обрабатывает запрос.
|
101 |
+
|
102 |
+
### Training process
|
103 |
+
|
104 |
+
The model was trained in two stages. In the first stage, MLP layers were trained on mathematics and code. In the second stage, the entire model was trained on internal and open synthetic instructional datasets.
|
105 |
+
|
106 |
+
### ru-llm-arena: **21.3** (local measurement)
|
107 |
+
|
108 |
+
| **Model** | **Score** | **95% CI** | **Avg Tokens** |
|
109 |
+
| ------------------------------------------- | --------- | --------------- | -------------- |
|
110 |
+
| **MTSAIR/Cotype-Nano** | **29.4** | **+1.7 / -1.6** | **616** |
|
111 |
+
| storm-7b | 20.62 | +2.0 / -1.6 | 419.32 |
|
112 |
+
| neural-chat-7b-v3-3 | 19.04 | +2.0 / -1.7 | 927.21 |
|
113 |
+
| Vikhrmodels-Vikhr-Llama-3.2-1B-instruct | 19.04 | +1.3 / -1.6 | 958.63 |
|
114 |
+
| gigachat_lite | 17.2 | +1.4 / -1.4 | 276.81 |
|
115 |
+
| Vikhrmodels-vikhr-qwen-1.5b-it | 13.19 | +1.4 / -1.6 | 2495.38 |
|
116 |
+
| meta-llama-Llama-3.2-1B-Instruct | 4.04 | +0.8 / -0.6 | 1240.53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|