File size: 5,217 Bytes
cb851a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
from typing import Optional
from torch import Tensor
import numpy as np
from huggingface_hub import PyTorchModelHubMixin

# Constants
A1 = 1.340264
A2 = -0.081106
A3 = 0.000893
A4 = 0.003796
SF = 66.50336

@torch.jit.script
def gaussian_encoding(
        v: Tensor,
        b: Tensor) -> Tensor:
    r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})`

    Args:
        v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})`
        b (Tensor): projection matrix of shape :math:`(\text{encoded_layer_size}, \text{input_size})`

    Returns:
        Tensor: mapped tensor of shape :math:`(N, *, 2 \cdot \text{encoded_layer_size})`

    See :class:`~rff.layers.GaussianEncoding` for more details.
    """
    vp = 2 * np.pi * v @ b.T
    return torch.cat((torch.cos(vp), torch.sin(vp)), dim=-1)


def sample_b(sigma: float, size: tuple) -> Tensor:
    r"""Matrix of size :attr:`size` sampled from from :math:`\mathcal{N}(0, \sigma^2)`

    Args:
        sigma (float): standard deviation
        size (tuple): size of the matrix sampled

    See :class:`~rff.layers.GaussianEncoding` for more details
    """
    return torch.randn(size) * sigma

class GaussianEncoding(nn.Module):
    """Layer for mapping coordinates using random Fourier features"""

    def __init__(self, sigma: Optional[float] = None,
                 input_size: Optional[float] = None,
                 encoded_size: Optional[float] = None,
                 b: Optional[Tensor] = None):
        r"""
        Args:
            sigma (Optional[float]): standard deviation
            input_size (Optional[float]): the number of input dimensions
            encoded_size (Optional[float]): the number of dimensions the `b` matrix maps to
            b (Optional[Tensor], optional): Optionally specify a :attr:`b` matrix already sampled
        Raises:
            ValueError:
                If :attr:`b` is provided and one of :attr:`sigma`, :attr:`input_size`,
                or :attr:`encoded_size` is provided. If :attr:`b` is not provided and one of
                :attr:`sigma`, :attr:`input_size`, or :attr:`encoded_size` is not provided.
        """
        super().__init__()
        if b is None:
            if sigma is None or input_size is None or encoded_size is None:
                raise ValueError(
                    'Arguments "sigma," "input_size," and "encoded_size" are required.')

            b = sample_b(sigma, (encoded_size, input_size))
        elif sigma is not None or input_size is not None or encoded_size is not None:
            raise ValueError('Only specify the "b" argument when using it.')
        self.b = nn.parameter.Parameter(b, requires_grad=False)

    def forward(self, v: Tensor) -> Tensor:
        r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})`

        Args:
            v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})`

        Returns:
            Tensor: Tensor mapping using random fourier features of shape :math:`(N, *, 2 \cdot \text{encoded_size})`
        """
        return gaussian_encoding(v, self.b)

def equal_earth_projection(L):
    latitude = L[:, 0]
    longitude = L[:, 1]
    latitude_rad = torch.deg2rad(latitude)
    longitude_rad = torch.deg2rad(longitude)
    sin_theta = (torch.sqrt(torch.tensor(3.0)) / 2) * torch.sin(latitude_rad)
    theta = torch.asin(sin_theta)
    denominator = 3 * (9 * A4 * theta**8 + 7 * A3 * theta**6 + 3 * A2 * theta**2 + A1)
    x = (2 * torch.sqrt(torch.tensor(3.0)) * longitude_rad * torch.cos(theta)) / denominator
    y = A4 * theta**9 + A3 * theta**7 + A2 * theta**3 + A1 * theta
    return (torch.stack((x, y), dim=1) * SF) / 180

class LocationEncoderCapsule(nn.Module):
    def __init__(self, sigma):
        super(LocationEncoderCapsule, self).__init__()
        rff_encoding = GaussianEncoding(sigma=sigma, input_size=2, encoded_size=256)
        self.km = sigma
        self.capsule = nn.Sequential(rff_encoding,
                                     nn.Linear(512, 1024),
                                     nn.ReLU(),
                                     nn.Linear(1024, 1024),
                                     nn.ReLU(),
                                     nn.Linear(1024, 1024),
                                     nn.ReLU())
        self.head = nn.Sequential(nn.Linear(1024, 512))

    def forward(self, x):
        x = self.capsule(x)
        x = self.head(x)
        return x

class LocationEncoder(nn.Module, PyTorchModelHubMixin):
    def __init__(self):
        super(LocationEncoder, self).__init__()
        self.sigma = [2**0, 2**4, 2**8]
        self.n = len(self.sigma)

        for i, s in enumerate(self.sigma):
            self.add_module('LocEnc' + str(i), LocationEncoderCapsule(sigma=s))

    def forward(self, location):
        location = equal_earth_projection(location)
        location_features = torch.zeros(location.shape[0], 512).to(location.device)

        for i in range(self.n):
            location_features += self._modules['LocEnc' + str(i)](location)
        
        return location_features