# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- from functools import partial import torch import torch.nn as nn import numpy as np from timm.models.vision_transformer import PatchEmbed, Block from huggingface_hub import PyTorchModelHubMixin from timm.models.layers import DropPath import math import torch.nn.functional as F def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.hidden_features = hidden_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class NormalCell(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, class_token=False, group=1, tokens_type='transformer', kernel=3, mlp_hidden_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.class_token = class_token if tokens_type == 'transformer': self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) else: raise NotImplementedError() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = mlp_hidden_dim if mlp_hidden_dim is not None else int(dim * mlp_ratio) PCM_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.PCM = nn.Sequential( nn.Conv2d(dim, PCM_dim, kernel, 1, kernel//2, 1, group), nn.BatchNorm2d(PCM_dim), nn.SiLU(inplace=True), nn.Conv2d(PCM_dim, dim, kernel, 1, kernel//2, 1, group), ) def forward(self, x): b, n, c = x.shape if self.class_token: n = n - 1 wh = int(math.sqrt(n)) convX = self.drop_path(self.PCM(x[:, 1:, :].view(b, wh, wh, c).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3, 1).contiguous().view(b, n, c)) x = x + self.drop_path(self.attn(self.norm1(x))) x[:, 1:] = x[:, 1:] + convX else: wh = int(math.sqrt(n)) x_2d = x.view(b, wh, wh, c).permute(0, 3, 1, 2).contiguous() convX = self.drop_path(self.PCM(x_2d).permute(0, 2, 3, 1).contiguous().view(b, n, c)) x = x + self.drop_path(self.attn(self.norm1(x))) x = x + convX x = x + self.drop_path(self.mlp(self.norm2(x))) return x class MaskedAutoencoderViTAE(nn.Module, PyTorchModelHubMixin): """ Masked Autoencoder with VisionTransformer backbone """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4., norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_pix_loss=False, kernel=3, mlp_hidden_dim=None): ''' @Param kernel: int, control the kernel size in PCM @Param mlp_hidden_dim: int, the hidden dimenison of FFN, overwrites mlp ratio, default None ''' super().__init__() # -------------------------------------------------------------------------- # MAE encoder specifics self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding self.blocks = nn.ModuleList([ NormalCell(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, kernel=kernel, class_token=True, group=embed_dim // 4, mlp_hidden_dim=mlp_hidden_dim) for i in range(depth)]) self.norm = norm_layer(embed_dim) # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- # MAE decoder specifics self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding self.decoder_blocks = nn.ModuleList([ Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) for i in range(decoder_depth)]) self.decoder_norm = norm_layer(decoder_embed_dim) self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size**2 * in_chans, bias=True) # encoder to decoder # -------------------------------------------------------------------------- self.norm_pix_loss = norm_pix_loss self.initialize_weights() def initialize_weights(self): # initialization # initialize (and freeze) pos_embed by sin-cos embedding pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # initialize patch_embed like nn.Linear (instead of nn.Conv2d) w = self.patch_embed.proj.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=.02) torch.nn.init.normal_(self.mask_token, std=.02) # initialize nn.Linear and nn.LayerNorm self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def patchify(self, imgs): """ imgs: (N, 3, H, W) x: (N, L, patch_size**2 *3) """ p = self.patch_embed.patch_size[0] assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 h = w = imgs.shape[2] // p x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) x = torch.einsum('nchpwq->nhwpqc', x) x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) return x def unpatchify(self, x): """ x: (N, L, patch_size**2 *3) imgs: (N, 3, H, W) """ p = self.patch_embed.patch_size[0] h = w = int(x.shape[1]**.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, 3)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p)) return imgs def random_masking(self, x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).expand(-1, -1, D)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return x_masked, mask, ids_restore def forward_encoder(self, x, mask_ratio): # embed patches x = self.patch_embed(x) # add pos embed w/o cls token x = x + self.pos_embed[:, 1:, :] # masking: length -> length * mask_ratio x, mask, ids_restore = self.random_masking(x, mask_ratio) # append cls token cls_token = self.cls_token + self.pos_embed[:, :1, :] cls_tokens = cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_tokens, x), dim=1) # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) return x, mask, ids_restore def forward_decoder(self, x, ids_restore): # embed tokens x = self.decoder_embed(x) # append mask tokens to sequence mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).expand(-1, -1, x.shape[2])) # unshuffle x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token # add pos embed x = x + self.decoder_pos_embed # apply Transformer blocks for blk in self.decoder_blocks: x = blk(x) x = self.decoder_norm(x) # predictor projection x = self.decoder_pred(x) # remove cls token x = x[:, 1:, :] return x def forward_loss(self, imgs, pred, mask): """ imgs: [N, 3, H, W] pred: [N, L, p*p*3] mask: [N, L], 0 is keep, 1 is remove, """ target = self.patchify(imgs) if self.norm_pix_loss: mean = target.mean(dim=-1, keepdim=True) var = target.var(dim=-1, keepdim=True) target = (target - mean) / (var + 1.e-6)**.5 loss = (pred - target) ** 2 loss = loss.mean(dim=-1) # [N, L], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss def forward(self, imgs, mask_ratio=0.75): latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio) pred = self.forward_decoder(latent, ids_restore) # [N, L, p*p*3] loss = self.forward_loss(imgs, pred, mask) return loss, pred, mask