|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.models.vision_transformer import PatchEmbed, Block |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = torch.arange(embed_dim // 2, dtype=np.float, device=pos.device) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = torch.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = torch.sin(out) |
|
emb_cos = torch.cos(out) |
|
|
|
emb = torch.cat([emb_sin, emb_cos], dim=1) |
|
return emb.double() |
|
|
|
|
|
class MaskedAutoencoderViT(nn.Module, PyTorchModelHubMixin): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, |
|
embed_dim=1024, depth=24, num_heads=16, |
|
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False): |
|
super().__init__() |
|
|
|
self.in_c = in_chans |
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) |
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) |
|
|
|
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) |
|
|
|
self.decoder_blocks = nn.ModuleList([ |
|
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) |
|
for i in range(decoder_depth)]) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size**2 * in_chans, bias=True) |
|
|
|
|
|
self.norm_pix_loss = norm_pix_loss |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
|
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) |
|
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
w = self.patch_embed.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
torch.nn.init.normal_(self.cls_token, std=.02) |
|
torch.nn.init.normal_(self.mask_token, std=.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def patchify(self, imgs, p, c): |
|
""" |
|
imgs: (N, C, H, W) |
|
p: Patch embed patch size |
|
c: Num channels |
|
x: (N, L, patch_size**2 *C) |
|
""" |
|
|
|
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 |
|
|
|
|
|
h = w = imgs.shape[2] // p |
|
x = imgs.reshape(shape=(imgs.shape[0], c, h, p, w, p)) |
|
x = torch.einsum('nchpwq->nhwpqc', x) |
|
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * c)) |
|
return x |
|
|
|
def unpatchify(self, x, p, c): |
|
""" |
|
x: (N, L, patch_size**2 *C) |
|
p: Patch embed patch size |
|
c: Num channels |
|
imgs: (N, C, H, W) |
|
""" |
|
|
|
|
|
h = w = int(x.shape[1]**.5) |
|
assert h * w == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) |
|
x = torch.einsum('nhwpqc->nchpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) |
|
return imgs |
|
|
|
def random_masking(self, x, mask_ratio): |
|
""" |
|
Perform per-sample random masking by per-sample shuffling. |
|
Per-sample shuffling is done by argsort random noise. |
|
x: [N, L, D], sequence |
|
""" |
|
N, L, D = x.shape |
|
len_keep = int(L * (1 - mask_ratio)) |
|
|
|
noise = torch.rand(N, L, device=x.device) |
|
|
|
|
|
ids_shuffle = torch.argsort(noise, dim=1) |
|
ids_restore = torch.argsort(ids_shuffle, dim=1) |
|
|
|
|
|
ids_keep = ids_shuffle[:, :len_keep] |
|
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
|
|
mask = torch.ones([N, L], device=x.device) |
|
mask[:, :len_keep] = 0 |
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return x_masked, mask, ids_restore |
|
|
|
def forward_encoder(self, x, mask_ratio): |
|
|
|
x = self.patch_embed(x) |
|
|
|
|
|
x = x + self.pos_embed[:, 1:, :] |
|
|
|
|
|
x, mask, ids_restore = self.random_masking(x, mask_ratio) |
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
return x, mask, ids_restore |
|
|
|
def forward_decoder(self, x, ids_restore): |
|
|
|
x = self.decoder_embed(x) |
|
|
|
|
|
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) |
|
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) |
|
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) |
|
x = torch.cat([x[:, :1, :], x_], dim=1) |
|
|
|
|
|
x = x + self.decoder_pos_embed |
|
|
|
|
|
for blk in self.decoder_blocks: |
|
x = blk(x) |
|
x = self.decoder_norm(x) |
|
|
|
|
|
x = self.decoder_pred(x) |
|
|
|
|
|
x = x[:, 1:, :] |
|
|
|
return x |
|
|
|
def forward_loss(self, imgs, pred, mask): |
|
""" |
|
imgs: [N, 3, H, W] |
|
pred: [N, L, p*p*3] |
|
mask: [N, L], 0 is keep, 1 is remove, |
|
""" |
|
|
|
|
|
|
|
|
|
target = self.patchify(imgs, self.patch_embed.patch_size[0], self.in_c) |
|
if self.norm_pix_loss: |
|
mean = target.mean(dim=-1, keepdim=True) |
|
var = target.var(dim=-1, keepdim=True) |
|
target = (target - mean) / (var + 1.e-6)**.5 |
|
|
|
loss = (pred - target) ** 2 |
|
loss = loss.mean(dim=-1) |
|
|
|
loss = (loss * mask).sum() / mask.sum() |
|
return loss |
|
|
|
def forward(self, imgs, mask_ratio=0.75): |
|
latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio) |
|
pred = self.forward_decoder(latent, ids_restore) |
|
loss = self.forward_loss(imgs, pred, mask) |
|
return loss, pred, mask |