Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/bair-climate-initiative/scale-mae/blob/main/mae/main_finetune.py
|
2 |
+
import torch
|
3 |
+
from timm.models.layers import trunc_normal_
|
4 |
+
from functools import partial
|
5 |
+
import timm.models.vision_transformer
|
6 |
+
import torch.nn as nn
|
7 |
+
from timm.models.vision_transformer import Block, PatchEmbed
|
8 |
+
import os
|
9 |
+
from torchvision.io import read_image
|
10 |
+
import numpy as np
|
11 |
+
import sys
|
12 |
+
import random
|
13 |
+
import pytorch_lightning as pl
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from huggingface_hub import PyTorchModelHubMixin
|
16 |
+
|
17 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
18 |
+
"""
|
19 |
+
grid_size: int of the grid height and width
|
20 |
+
return:
|
21 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
22 |
+
"""
|
23 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
24 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
25 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
26 |
+
grid = np.stack(grid, axis=0)
|
27 |
+
|
28 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
29 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
30 |
+
if cls_token:
|
31 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
32 |
+
return pos_embed
|
33 |
+
|
34 |
+
|
35 |
+
def get_2d_sincos_pos_embed_with_resolution(
|
36 |
+
embed_dim, grid_size, res, cls_token=False, device="cpu"
|
37 |
+
):
|
38 |
+
"""
|
39 |
+
grid_size: int of the grid height and width
|
40 |
+
res: array of size n, representing the resolution of a pixel (say, in meters),
|
41 |
+
return:
|
42 |
+
pos_embed: [n,grid_size*grid_size, embed_dim] or [n,1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
43 |
+
"""
|
44 |
+
# res = torch.FloatTensor(res).to(device)
|
45 |
+
res = res.to(device)
|
46 |
+
grid_h = torch.arange(grid_size, dtype=torch.float32, device=device)
|
47 |
+
grid_w = torch.arange(grid_size, dtype=torch.float32, device=device)
|
48 |
+
grid = torch.meshgrid(
|
49 |
+
grid_w, grid_h, indexing="xy"
|
50 |
+
) # here h goes first,direction reversed for numpy
|
51 |
+
grid = torch.stack(grid, dim=0) # 2 x h x w
|
52 |
+
|
53 |
+
# grid = grid.reshape([2, 1, grid_size, grid_size])
|
54 |
+
grid = torch.einsum("chw,n->cnhw", grid, res) # 2 x n x h x w
|
55 |
+
_, n, h, w = grid.shape
|
56 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid_torch(
|
57 |
+
embed_dim, grid
|
58 |
+
) # # (nxH*W, D/2)
|
59 |
+
pos_embed = pos_embed.reshape(n, h * w, embed_dim)
|
60 |
+
if cls_token:
|
61 |
+
pos_embed = torch.cat(
|
62 |
+
[
|
63 |
+
torch.zeros(
|
64 |
+
[n, 1, embed_dim], dtype=torch.float32, device=pos_embed.device
|
65 |
+
),
|
66 |
+
pos_embed,
|
67 |
+
],
|
68 |
+
dim=1,
|
69 |
+
)
|
70 |
+
return pos_embed
|
71 |
+
|
72 |
+
|
73 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
74 |
+
assert embed_dim % 2 == 0
|
75 |
+
|
76 |
+
# use half of dimensions to encode grid_h
|
77 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
78 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
79 |
+
|
80 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
81 |
+
return emb
|
82 |
+
|
83 |
+
|
84 |
+
def get_2d_sincos_pos_embed_from_grid_torch(embed_dim, grid):
|
85 |
+
assert embed_dim % 2 == 0
|
86 |
+
|
87 |
+
# use half of dimensions to encode grid_h
|
88 |
+
emb_h = get_1d_sincos_pos_embed_from_grid_torch(
|
89 |
+
embed_dim // 2, grid[0]
|
90 |
+
) # (H*W, D/2)
|
91 |
+
emb_w = get_1d_sincos_pos_embed_from_grid_torch(
|
92 |
+
embed_dim // 2, grid[1]
|
93 |
+
) # (H*W, D/2)
|
94 |
+
|
95 |
+
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D)
|
96 |
+
return emb
|
97 |
+
|
98 |
+
|
99 |
+
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos):
|
100 |
+
"""
|
101 |
+
embed_dim: output dimension for each position
|
102 |
+
pos: a list of positions to be encoded: size (M,)
|
103 |
+
out: (M, D)
|
104 |
+
"""
|
105 |
+
assert embed_dim % 2 == 0
|
106 |
+
old_shape = pos
|
107 |
+
omega = torch.arange(embed_dim // 2, dtype=torch.float32, device=pos.device)
|
108 |
+
omega /= embed_dim / 2.0
|
109 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
110 |
+
|
111 |
+
pos = pos.reshape(-1) # (M,)
|
112 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
113 |
+
|
114 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
115 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
116 |
+
|
117 |
+
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
118 |
+
return emb
|
119 |
+
|
120 |
+
|
121 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
122 |
+
"""
|
123 |
+
embed_dim: output dimension for each position
|
124 |
+
pos: a list of positions to be encoded: size (M,)
|
125 |
+
out: (M, D)
|
126 |
+
"""
|
127 |
+
assert embed_dim % 2 == 0
|
128 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
129 |
+
omega /= embed_dim / 2.0
|
130 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
131 |
+
|
132 |
+
pos = pos.reshape(-1) # (M,)
|
133 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
134 |
+
|
135 |
+
emb_sin = np.sin(out) # (M, D/2)
|
136 |
+
emb_cos = np.cos(out) # (M, D/2)
|
137 |
+
|
138 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
139 |
+
return emb
|
140 |
+
|
141 |
+
|
142 |
+
# --------------------------------------------------------
|
143 |
+
# Interpolate position embeddings for high-resolution
|
144 |
+
# References:
|
145 |
+
# DeiT: https://github.com/facebookresearch/deit
|
146 |
+
# --------------------------------------------------------
|
147 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
148 |
+
if "pos_embed" in checkpoint_model:
|
149 |
+
pos_embed_checkpoint = checkpoint_model["pos_embed"]
|
150 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
151 |
+
num_patches = model.patch_embed.num_patches
|
152 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
153 |
+
# height (== width) for the checkpoint position embedding
|
154 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
155 |
+
# height (== width) for the new position embedding
|
156 |
+
new_size = int(num_patches**0.5)
|
157 |
+
# class_token and dist_token are kept unchanged
|
158 |
+
if orig_size != new_size:
|
159 |
+
print(
|
160 |
+
"Position interpolate from %dx%d to %dx%d"
|
161 |
+
% (orig_size, orig_size, new_size, new_size)
|
162 |
+
)
|
163 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
164 |
+
# only the position tokens are interpolated
|
165 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
166 |
+
pos_tokens = pos_tokens.reshape(
|
167 |
+
-1, orig_size, orig_size, embedding_size
|
168 |
+
).permute(0, 3, 1, 2)
|
169 |
+
pos_tokens = torch.nn.functional.interpolate(
|
170 |
+
pos_tokens,
|
171 |
+
size=(new_size, new_size),
|
172 |
+
mode="bicubic",
|
173 |
+
align_corners=False,
|
174 |
+
)
|
175 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
176 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
177 |
+
checkpoint_model["pos_embed"] = new_pos_embed
|
178 |
+
|
179 |
+
class PatchEmbedUnSafe(PatchEmbed):
|
180 |
+
"""Image to Patch Embedding"""
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
B, C, H, W = x.shape
|
184 |
+
# Dropped size check in timm
|
185 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
186 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
187 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
188 |
+
return x
|
189 |
+
|
190 |
+
|
191 |
+
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
|
192 |
+
"""Vision Transformer with support for global average pooling"""
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self, cls_token_flag=False, global_pool=False, patch_size=16, in_chans=3, embed_dim=1024, **kwargs
|
196 |
+
):
|
197 |
+
super().__init__(embed_dim=embed_dim, **kwargs)
|
198 |
+
self.cls_token_flag = cls_token_flag
|
199 |
+
|
200 |
+
self.patch_embed = PatchEmbedUnSafe(
|
201 |
+
img_size=224,
|
202 |
+
patch_size=patch_size,
|
203 |
+
in_chans=in_chans,
|
204 |
+
embed_dim=embed_dim,
|
205 |
+
)
|
206 |
+
|
207 |
+
self.global_pool = global_pool
|
208 |
+
if self.global_pool:
|
209 |
+
norm_layer = kwargs["norm_layer"]
|
210 |
+
embed_dim = embed_dim
|
211 |
+
self.fc_norm = norm_layer(embed_dim)
|
212 |
+
|
213 |
+
del self.norm # remove the original norm
|
214 |
+
|
215 |
+
del self.head
|
216 |
+
if self.cls_token_flag == False:
|
217 |
+
del self.cls_token
|
218 |
+
del self.pos_embed
|
219 |
+
|
220 |
+
def forward_features(self, x, input_res=None):
|
221 |
+
B, _, h, w = x.shape
|
222 |
+
x = self.patch_embed(x)
|
223 |
+
input_res = input_res.cpu()
|
224 |
+
|
225 |
+
num_patches = int(
|
226 |
+
(h * w) / (self.patch_embed.patch_size[0] * self.patch_embed.patch_size[1])
|
227 |
+
)
|
228 |
+
pos_embed = get_2d_sincos_pos_embed_with_resolution(
|
229 |
+
x.shape[-1],
|
230 |
+
int(num_patches**0.5),
|
231 |
+
input_res,
|
232 |
+
cls_token=self.cls_token_flag,
|
233 |
+
device=x.device,
|
234 |
+
)
|
235 |
+
|
236 |
+
if self.cls_token_flag:
|
237 |
+
cls_tokens = self.cls_token.expand(
|
238 |
+
B, -1, -1
|
239 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
240 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
241 |
+
x = x + pos_embed
|
242 |
+
x = self.pos_drop(x)
|
243 |
+
|
244 |
+
for blk in self.blocks:
|
245 |
+
x = blk(x)
|
246 |
+
|
247 |
+
#x = x[:, 1:, :].mean(dim=1) # global pool without cls token
|
248 |
+
|
249 |
+
outcome = self.fc_norm(x)
|
250 |
+
return outcome
|
251 |
+
|
252 |
+
def forward(self, x, input_res=None):
|
253 |
+
x = self.forward_features(x, input_res=input_res)
|
254 |
+
return x
|
255 |
+
|
256 |
+
|
257 |
+
def vit_large_patch16(**kwargs):
|
258 |
+
model = VisionTransformer(
|
259 |
+
patch_size=16,
|
260 |
+
embed_dim=1024,
|
261 |
+
depth=24,
|
262 |
+
num_heads=16,
|
263 |
+
mlp_ratio=4,
|
264 |
+
qkv_bias=True,
|
265 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
266 |
+
**kwargs
|
267 |
+
)
|
268 |
+
return model
|
269 |
+
|
270 |
+
def get_ScaleMAE_model(global_pool=True, cls_token=True):
|
271 |
+
|
272 |
+
model = vit_large_patch16(
|
273 |
+
num_classes=1000,
|
274 |
+
drop_path_rate=0.1,
|
275 |
+
global_pool=global_pool,
|
276 |
+
cls_token_flag = cls_token
|
277 |
+
)
|
278 |
+
|
279 |
+
if global_pool:
|
280 |
+
assert set(msg.missing_keys) == {
|
281 |
+
"head.weight",
|
282 |
+
"head.bias",
|
283 |
+
"fc_norm.weight",
|
284 |
+
"fc_norm.bias",
|
285 |
+
}
|
286 |
+
else:
|
287 |
+
pass
|
288 |
+
|
289 |
+
return model
|
290 |
+
|
291 |
+
|
292 |
+
class ScaleMAE_baseline(pl.LightningModule, PyTorchModelHubMixin):
|
293 |
+
def __init__(self, feat_dim=1024, fc_dim=1024, global_pool=False, cls_token_flag=True):
|
294 |
+
super().__init__()
|
295 |
+
self.model = get_ScaleMAE_model(global_pool= global_pool,cls_token = cls_token_flag)
|
296 |
+
|
297 |
+
def forward(self,x,patch_size,input_res=10.0):
|
298 |
+
|
299 |
+
input_res = torch.tensor([10.0]).to(x.device)
|
300 |
+
x = self.model(x,input_res=input_res)
|
301 |
+
|
302 |
+
return x
|