File size: 20,219 Bytes
d81e1fd f74bb58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# THE CODE WAS TAKEN AND ADAPTED FROM https://pengsongyou.github.io/sap
# @inproceedings{Peng2021SAP,
# author = {Peng, Songyou and Jiang, Chiyu "Max" and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger, Andreas},
# title = {Shape As Points: A Differentiable Poisson Solver},
# booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
# year = {2021}
# }
import torch
import io, os, logging, urllib
import yaml
import trimesh
import imageio
import numbers
import math
import numpy as np
from collections import OrderedDict
from plyfile import PlyData
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo
from skimage import measure, img_as_float32
from igl import adjacency_matrix, connected_components
##################################################
# Below are functions for DPSR
def fftfreqs(res, dtype=torch.float32, exact=True):
"""
Helper function to return frequency tensors
:param res: n_dims int tuple of number of frequency modes
:return:
"""
n_dims = len(res)
freqs = []
for dim in range(n_dims - 1):
r_ = res[dim]
freq = np.fft.fftfreq(r_, d=1/r_)
freqs.append(torch.tensor(freq, dtype=dtype))
r_ = res[-1]
if exact:
freqs.append(torch.tensor(np.fft.rfftfreq(r_, d=1/r_), dtype=dtype))
else:
freqs.append(torch.tensor(np.fft.rfftfreq(r_, d=1/r_)[:-1], dtype=dtype))
omega = torch.meshgrid(freqs)
omega = list(omega)
omega = torch.stack(omega, dim=-1)
return omega
def img(x, deg=1): # imaginary of tensor (assume last dim: real/imag)
"""
multiply tensor x by i ** deg
"""
deg %= 4
if deg == 0:
res = x
elif deg == 1:
res = x[..., [1, 0]]
res[..., 0] = -res[..., 0]
elif deg == 2:
res = -x
elif deg == 3:
res = x[..., [1, 0]]
res[..., 1] = -res[..., 1]
return res
def spec_gaussian_filter(res, sig):
omega = fftfreqs(res, dtype=torch.float64) # [dim0, dim1, dim2, d]
dis = torch.sqrt(torch.sum(omega ** 2, dim=-1))
filter_ = torch.exp(-0.5*((sig*2*dis/res[0])**2)).unsqueeze(-1).unsqueeze(-1)
filter_.requires_grad = False
return filter_
def grid_interp(grid, pts, batched=True):
"""
:param grid: tensor of shape (batch, *size, in_features)
:param pts: tensor of shape (batch, num_points, dim) within range (0, 1)
:return values at query points
"""
if not batched:
grid = grid.unsqueeze(0)
pts = pts.unsqueeze(0)
dim = pts.shape[-1]
bs = grid.shape[0]
size = torch.tensor(grid.shape[1:-1]).to(grid.device).type(pts.dtype)
cubesize = 1.0 / size
ind0 = torch.floor(pts / cubesize).long() # (batch, num_points, dim)
ind1 = torch.fmod(torch.ceil(pts / cubesize), size).long() # periodic wrap-around
ind01 = torch.stack((ind0, ind1), dim=0) # (2, batch, num_points, dim)
tmp = torch.tensor([0,1],dtype=torch.long)
com_ = torch.stack(torch.meshgrid(tuple([tmp] * dim)), dim=-1).view(-1, dim)
dim_ = torch.arange(dim).repeat(com_.shape[0], 1) # (2**dim, dim)
ind_ = ind01[com_, ..., dim_] # (2**dim, dim, batch, num_points)
ind_n = ind_.permute(2, 3, 0, 1) # (batch, num_points, 2**dim, dim)
ind_b = torch.arange(bs).expand(ind_n.shape[1], ind_n.shape[2], bs).permute(2, 0, 1) # (batch, num_points, 2**dim)
# latent code on neighbor nodes
if dim == 2:
lat = grid.clone()[ind_b, ind_n[..., 0], ind_n[..., 1]] # (batch, num_points, 2**dim, in_features)
else:
lat = grid.clone()[ind_b, ind_n[..., 0], ind_n[..., 1], ind_n[..., 2]] # (batch, num_points, 2**dim, in_features)
# weights of neighboring nodes
xyz0 = ind0.type(cubesize.dtype) * cubesize # (batch, num_points, dim)
xyz1 = (ind0.type(cubesize.dtype) + 1) * cubesize # (batch, num_points, dim)
xyz01 = torch.stack((xyz0, xyz1), dim=0) # (2, batch, num_points, dim)
pos = xyz01[com_, ..., dim_].permute(2,3,0,1) # (batch, num_points, 2**dim, dim)
pos_ = xyz01[1-com_, ..., dim_].permute(2,3,0,1) # (batch, num_points, 2**dim, dim)
pos_ = pos_.type(pts.dtype)
dxyz_ = torch.abs(pts.unsqueeze(-2) - pos_) / cubesize # (batch, num_points, 2**dim, dim)
weights = torch.prod(dxyz_, dim=-1, keepdim=False) # (batch, num_points, 2**dim)
query_values = torch.sum(lat * weights.unsqueeze(-1), dim=-2) # (batch, num_points, in_features)
if not batched:
query_values = query_values.squeeze(0)
return query_values
def scatter_to_grid(inds, vals, size):
"""
Scatter update values into empty tensor of size size.
:param inds: (#values, dims)
:param vals: (#values)
:param size: tuple for size. len(size)=dims
"""
dims = inds.shape[1]
assert(inds.shape[0] == vals.shape[0])
assert(len(size) == dims)
dev = vals.device
# result = torch.zeros(*size).view(-1).to(dev).type(vals.dtype) # flatten
# # flatten inds
result = torch.zeros(*size, device=dev).view(-1).type(vals.dtype) # flatten
# flatten inds
fac = [np.prod(size[i+1:]) for i in range(len(size)-1)] + [1]
fac = torch.tensor(fac, device=dev).type(inds.dtype)
inds_fold = torch.sum(inds*fac, dim=-1) # [#values,]
result.scatter_add_(0, inds_fold, vals)
result = result.view(*size)
return result
def point_rasterize(pts, vals, size):
"""
:param pts: point coords, tensor of shape (batch, num_points, dim) within range (0, 1)
:param vals: point values, tensor of shape (batch, num_points, features)
:param size: len(size)=dim tuple for grid size
:return rasterized values (batch, features, res0, res1, res2)
"""
dim = pts.shape[-1]
assert(pts.shape[:2] == vals.shape[:2])
assert(pts.shape[2] == dim)
size_list = list(size)
size = torch.tensor(size).to(pts.device).float()
cubesize = 1.0 / size
bs = pts.shape[0]
nf = vals.shape[-1]
npts = pts.shape[1]
dev = pts.device
ind0 = torch.floor(pts / cubesize).long() # (batch, num_points, dim)
ind1 = torch.fmod(torch.ceil(pts / cubesize), size).long() # periodic wrap-around
ind01 = torch.stack((ind0, ind1), dim=0) # (2, batch, num_points, dim)
tmp = torch.tensor([0,1],dtype=torch.long)
com_ = torch.stack(torch.meshgrid(tuple([tmp] * dim)), dim=-1).view(-1, dim)
dim_ = torch.arange(dim).repeat(com_.shape[0], 1) # (2**dim, dim)
ind_ = ind01[com_, ..., dim_] # (2**dim, dim, batch, num_points)
ind_n = ind_.permute(2, 3, 0, 1) # (batch, num_points, 2**dim, dim)
# ind_b = torch.arange(bs).expand(ind_n.shape[1], ind_n.shape[2], bs).permute(2, 0, 1) # (batch, num_points, 2**dim)
ind_b = torch.arange(bs, device=dev).expand(ind_n.shape[1], ind_n.shape[2], bs).permute(2, 0, 1) # (batch, num_points, 2**dim)
# weights of neighboring nodes
xyz0 = ind0.type(cubesize.dtype) * cubesize # (batch, num_points, dim)
xyz1 = (ind0.type(cubesize.dtype) + 1) * cubesize # (batch, num_points, dim)
xyz01 = torch.stack((xyz0, xyz1), dim=0) # (2, batch, num_points, dim)
pos = xyz01[com_, ..., dim_].permute(2,3,0,1) # (batch, num_points, 2**dim, dim)
pos_ = xyz01[1-com_, ..., dim_].permute(2,3,0,1) # (batch, num_points, 2**dim, dim)
pos_ = pos_.type(pts.dtype)
dxyz_ = torch.abs(pts.unsqueeze(-2) - pos_) / cubesize # (batch, num_points, 2**dim, dim)
weights = torch.prod(dxyz_, dim=-1, keepdim=False) # (batch, num_points, 2**dim)
ind_b = ind_b.unsqueeze(-1).unsqueeze(-1) # (batch, num_points, 2**dim, 1, 1)
ind_n = ind_n.unsqueeze(-2) # (batch, num_points, 2**dim, 1, dim)
ind_f = torch.arange(nf, device=dev).view(1, 1, 1, nf, 1) # (1, 1, 1, nf, 1)
# ind_f = torch.arange(nf).view(1, 1, 1, nf, 1) # (1, 1, 1, nf, 1)
ind_b = ind_b.expand(bs, npts, 2**dim, nf, 1)
ind_n = ind_n.expand(bs, npts, 2**dim, nf, dim).to(dev)
ind_f = ind_f.expand(bs, npts, 2**dim, nf, 1)
inds = torch.cat([ind_b, ind_f, ind_n], dim=-1) # (batch, num_points, 2**dim, nf, 1+1+dim)
# weighted values
vals = weights.unsqueeze(-1) * vals.unsqueeze(-2) # (batch, num_points, 2**dim, nf)
inds = inds.view(-1, dim+2).permute(1, 0).long() # (1+dim+1, bs*npts*2**dim*nf)
vals = vals.reshape(-1) # (bs*npts*2**dim*nf)
tensor_size = [bs, nf] + size_list
raster = scatter_to_grid(inds.permute(1, 0), vals, [bs, nf] + size_list)
return raster # [batch, nf, res, res, res]
##################################################
# Below are the utilization functions in general
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.n = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.n = n
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
@property
def valcavg(self):
return self.val.sum().item() / (self.n != 0).sum().item()
@property
def avgcavg(self):
return self.avg.sum().item() / (self.count != 0).sum().item()
def load_model_manual(state_dict, model):
new_state_dict = OrderedDict()
is_model_parallel = isinstance(model, torch.nn.DataParallel)
for k, v in state_dict.items():
if k.startswith('module.') != is_model_parallel:
if k.startswith('module.'):
# remove module
k = k[7:]
else:
# add module
k = 'module.' + k
new_state_dict[k]=v
model.load_state_dict(new_state_dict)
def mc_from_psr(psr_grid, pytorchify=False, real_scale=False, zero_level=0):
'''
Run marching cubes from PSR grid
'''
batch_size = psr_grid.shape[0]
s = psr_grid.shape[-1] # size of psr_grid
psr_grid_numpy = psr_grid.squeeze().detach().cpu().numpy()
if batch_size>1:
verts, faces, normals = [], [], []
for i in range(batch_size):
verts_cur, faces_cur, normals_cur, values = measure.marching_cubes(psr_grid_numpy[i], level=0)
verts.append(verts_cur)
faces.append(faces_cur)
normals.append(normals_cur)
verts = np.stack(verts, axis = 0)
faces = np.stack(faces, axis = 0)
normals = np.stack(normals, axis = 0)
else:
try:
verts, faces, normals, values = measure.marching_cubes(psr_grid_numpy, level=zero_level)
except:
verts, faces, normals, values = measure.marching_cubes(psr_grid_numpy)
if real_scale:
verts = verts / (s-1) # scale to range [0, 1]
else:
verts = verts / s # scale to range [0, 1)
if pytorchify:
device = psr_grid.device
verts = torch.Tensor(np.ascontiguousarray(verts)).to(device)
faces = torch.Tensor(np.ascontiguousarray(faces)).to(device)
normals = torch.Tensor(np.ascontiguousarray(-normals)).to(device)
return verts, faces, normals
def calc_inters_points(verts, faces, pose, img_size, mask_gt=None):
verts = verts.squeeze()
faces = faces.squeeze()
pix_to_face, w, mask = mesh_rasterization(verts, faces, pose, img_size)
if mask_gt is not None:
#! only evaluate within the intersection
mask = mask & mask_gt
# find 3D points intesected on the mesh
if True:
w_masked = w[mask]
f_p = faces[pix_to_face[mask]].long() # cooresponding faces for each pixel
# corresponding vertices for p_closest
v_a, v_b, v_c = verts[f_p[..., 0]], verts[f_p[..., 1]], verts[f_p[..., 2]]
# calculate the intersection point of each pixel and the mesh
p_inters = w_masked[..., 0, None] * v_a + \
w_masked[..., 1, None] * v_b + \
w_masked[..., 2, None] * v_c
else:
# backproject ndc to world coordinates using z-buffer
W, H = img_size[1], img_size[0]
xy = uv.to(mask.device)[mask]
x_ndc = 1 - (2*xy[:, 0]) / (W - 1)
y_ndc = 1 - (2*xy[:, 1]) / (H - 1)
z = zbuf.squeeze().reshape(H * W)[mask]
xy_depth = torch.stack((x_ndc, y_ndc, z), dim=1)
p_inters = pose.unproject_points(xy_depth, world_coordinates=True)
# if there are outlier points, we should remove it
if (p_inters.max()>1) | (p_inters.min()<-1):
mask_bound = (p_inters>=-1) & (p_inters<=1)
mask_bound = (mask_bound.sum(dim=-1)==3)
mask[mask==True] = mask_bound
p_inters = p_inters[mask_bound]
print('!!!!!find outlier!')
return p_inters, mask, f_p, w_masked
def mesh_rasterization(verts, faces, pose, img_size):
'''
Use PyTorch3D to rasterize the mesh given a camera
'''
transformed_v = pose.transform_points(verts.detach()) # world -> ndc coordinate system
if isinstance(pose, PerspectiveCameras):
transformed_v[..., 2] = 1/transformed_v[..., 2]
# find p_closest on mesh of each pixel via rasterization
transformed_mesh = Meshes(verts=[transformed_v], faces=[faces])
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
transformed_mesh,
image_size=img_size,
blur_radius=0,
faces_per_pixel=1,
perspective_correct=False
)
pix_to_face = pix_to_face.reshape(1, -1) # B x reso x reso -> B x (reso x reso)
mask = pix_to_face.clone() != -1
mask = mask.squeeze()
pix_to_face = pix_to_face.squeeze()
w = bary_coords.reshape(-1, 3)
return pix_to_face, w, mask
def verts_on_largest_mesh(verts, faces):
'''
verts: Numpy array or Torch.Tensor (N, 3)
faces: Numpy array (N, 3)
'''
if torch.is_tensor(faces):
verts = verts.squeeze().detach().cpu().numpy()
faces = faces.squeeze().int().detach().cpu().numpy()
A = adjacency_matrix(faces)
num, conn_idx, conn_size = connected_components(A)
if num == 0:
v_large, f_large = verts, faces
else:
max_idx = conn_size.argmax() # find the index of the largest component
v_large = verts[conn_idx==max_idx] # keep points on the largest component
if True:
mesh_largest = trimesh.Trimesh(verts, faces)
connected_comp = mesh_largest.split(only_watertight=False)
mesh_largest = connected_comp[max_idx]
v_large, f_large = mesh_largest.vertices, mesh_largest.faces
v_large = v_large.astype(np.float32)
return v_large, f_large
def update_recursive(dict1, dict2):
''' Update two config dictionaries recursively.
Args:
dict1 (dict): first dictionary to be updated
dict2 (dict): second dictionary which entries should be used
'''
for k, v in dict2.items():
if k not in dict1:
dict1[k] = dict()
if isinstance(v, dict):
update_recursive(dict1[k], v)
else:
dict1[k] = v
def scale2onet(p, scale=1.2):
'''
Scale the point cloud from SAP to ONet range
'''
return (p - 0.5) * scale
def update_optimizer(inputs, cfg, epoch, model=None, schedule=None):
if model is not None:
if schedule is not None:
optimizer = torch.optim.Adam([
{"params": model.parameters(),
"lr": schedule[0].get_learning_rate(epoch)},
{"params": inputs,
"lr": schedule[1].get_learning_rate(epoch)}])
elif 'lr' in cfg['train']:
optimizer = torch.optim.Adam([
{"params": model.parameters(),
"lr": float(cfg['train']['lr'])},
{"params": inputs,
"lr": float(cfg['train']['lr_pcl'])}])
else:
raise Exception('no known learning rate')
else:
if schedule is not None:
optimizer = torch.optim.Adam([inputs], lr=schedule[0].get_learning_rate(epoch))
else:
optimizer = torch.optim.Adam([inputs], lr=float(cfg['train']['lr_pcl']))
return optimizer
def is_url(url):
scheme = urllib.parse.urlparse(url).scheme
return scheme in ('http', 'https')
def load_url(url):
'''Load a module dictionary from url.
Args:
url (str): url to saved model
'''
print(url)
print('=> Loading checkpoint from url...')
state_dict = model_zoo.load_url(url, progress=True)
return state_dict
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=3):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / std) ** 2 / 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight, groups=self.groups)
# Originally from https://github.com/amosgropp/IGR/blob/0db06b1273/code/utils/general.py
def get_learning_rate_schedules(schedule_specs):
schedules = []
for key in schedule_specs.keys():
schedules.append(StepLearningRateSchedule(
schedule_specs[key]['initial'],
schedule_specs[key]["interval"],
schedule_specs[key]["factor"],
schedule_specs[key]["final"]))
return schedules
class LearningRateSchedule:
def get_learning_rate(self, epoch):
pass
class StepLearningRateSchedule(LearningRateSchedule):
def __init__(self, initial, interval, factor, final=1e-6):
self.initial = float(initial)
self.interval = interval
self.factor = factor
self.final = float(final)
def get_learning_rate(self, epoch):
lr = np.maximum(self.initial * (self.factor ** (epoch // self.interval)), 5.0e-6)
if lr > self.final:
return lr
else:
return self.final
def adjust_learning_rate(lr_schedules, optimizer, epoch):
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_schedules[i].get_learning_rate(epoch) |