File size: 4,953 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
#
# This code is inspired by the Tencent's LLaMA-Pro library.
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from collections import OrderedDict
from typing import TYPE_CHECKING

import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.modeling_utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    shard_checkpoint,
)


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel


def change_name(name: str, old_index: int, new_index: int) -> str:
    return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index))


def block_expansion(
    model_name_or_path: str,
    output_dir: str,
    num_expand: int,
    shard_size: str = "2GB",
    save_safetensors: bool = True,
):
    r"""
    Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
    Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
    """
    config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
    num_layers = getattr(config, "num_hidden_layers")
    setattr(config, "num_hidden_layers", num_layers + num_expand)
    config.save_pretrained(output_dir)

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    tokenizer.save_pretrained(output_dir)

    config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)  # load the original one
    if save_safetensors:
        setattr(config, "tie_word_embeddings", False)  # safetensors does not allow shared weights

    model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        config=config,
        torch_dtype="auto",
        trust_remote_code=True,
        low_cpu_mem_usage=True,
    )
    state_dict = model.state_dict()

    if num_layers % num_expand != 0:
        raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand))

    split = num_layers // num_expand
    layer_cnt = 0
    output_state_dict = OrderedDict()
    for i in range(num_layers):
        for key, value in state_dict.items():
            if ".{:d}.".format(i) in key:
                output_state_dict[change_name(key, i, layer_cnt)] = value

        print("Add layer {} copied from layer {}".format(layer_cnt, i))
        layer_cnt += 1
        if (i + 1) % split == 0:
            for key, value in state_dict.items():
                if ".{:d}.".format(i) in key:
                    if "down_proj" in key or "o_proj" in key:
                        output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value)
                    else:
                        output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)

            print("Add layer {} expanded from layer {}".format(layer_cnt, i))
            layer_cnt += 1

    for key, value in state_dict.items():
        if key not in output_state_dict:
            output_state_dict[key] = value

    weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
    shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)

    for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
        if save_safetensors:
            save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
        else:
            torch.save(shard, os.path.join(output_dir, shard_file))

    if index is None:
        print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
    else:
        index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
        with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2, sort_keys=True)
        print("Model weights saved in {}".format(output_dir))

    print("- Fine-tune this model with:")
    print("model_name_or_path: {}".format(output_dir))
    print("finetuning_type: freeze")
    print("freeze_trainable_layers: {}".format(num_expand))
    print("use_llama_pro: true")


if __name__ == "__main__":
    fire.Fire(block_expansion)