File size: 7,210 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2024 HuggingFace Inc., Daniel Han-Chen & the Unsloth team and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers and PEFT library,
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/modeling_utils.py
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/utils/other.py
# and the Unsloth library.
# https://github.com/unslothai/unsloth/blob/July-2024/unsloth/models/_utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from functools import partial, wraps
from types import MethodType
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union

import torch

from ...extras.constants import LAYERNORM_NAMES
from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PreTrainedModel

    from ...hparams import ModelArguments


logger = get_logger(__name__)


def get_unsloth_gradient_checkpointing_func() -> Callable:
    class UnslothGradientCheckpointing(torch.autograd.Function):
        r"""
        Saves VRAM by smartly offloading to RAM.
        """

        @staticmethod
        @torch.cuda.amp.custom_fwd
        def forward(
            ctx: "torch.autograd.Function",
            forward_function: "torch.Module",
            hidden_states: "torch.Tensor",
            *args: Union["torch.Tensor", Any],
        ) -> "torch.Tensor":
            saved_hidden_states = hidden_states.to("cpu", non_blocking=True)
            with torch.no_grad():
                output = forward_function(hidden_states, *args)

            ctx.save_for_backward(saved_hidden_states)
            ctx.forward_function = forward_function
            ctx.args = args
            return output

        @staticmethod
        @torch.cuda.amp.custom_bwd
        def backward(ctx: "torch.autograd.Function", grad_output: "torch.Tensor") -> "torch.Tensor":
            (hidden_states,) = ctx.saved_tensors
            hidden_states = hidden_states.to("cuda", non_blocking=True).detach()
            hidden_states.requires_grad_(True)
            with torch.enable_grad():
                (output,) = ctx.forward_function(hidden_states, *ctx.args)

            torch.autograd.backward(output, grad_output)
            return (None, hidden_states.grad) + (None,) * len(ctx.args)

    return UnslothGradientCheckpointing.apply


def get_custom_gradient_checkpointing_func(gradient_checkpointing_func: Callable) -> Callable:
    r"""
    Only applies gradient checkpointing to trainable layers.
    """

    @wraps(gradient_checkpointing_func)
    def custom_gradient_checkpointing_func(func: Callable, *args: Union["torch.Tensor", Any], **kwargs):
        module: "torch.nn.Module" = func.__self__

        if any(param.requires_grad for param in module.parameters()):
            for arg in args:
                if torch.is_tensor(arg) and torch.is_floating_point(arg):
                    arg.requires_grad_(True)

        return gradient_checkpointing_func(func, *args, **kwargs)

    if hasattr(gradient_checkpointing_func, "__self__"):  # fix unsloth gc test case
        custom_gradient_checkpointing_func.__self__ = gradient_checkpointing_func.__self__

    return custom_gradient_checkpointing_func


def _gradient_checkpointing_enable(
    self: "PreTrainedModel",
    gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None,
    use_unsloth_gc: bool = False,
) -> None:
    r"""
    Activates gradient checkpointing for the current model.

    Modification of the original method to enable gradient checkpointing for block-wise optimizer.
    """
    from torch.utils.checkpoint import checkpoint

    if not self.supports_gradient_checkpointing:
        raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__))

    if gradient_checkpointing_kwargs is None:
        gradient_checkpointing_kwargs = {"use_reentrant": True}

    if use_unsloth_gc:
        gradient_checkpointing_func = get_unsloth_gradient_checkpointing_func()
    else:
        gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)

    gradient_checkpointing_func = get_custom_gradient_checkpointing_func(gradient_checkpointing_func)
    if "value" in inspect.signature(self._set_gradient_checkpointing).parameters:  # old GC format
        self.apply(partial(self._set_gradient_checkpointing, value=True))
        self.enable_input_require_grads()
        logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
    else:  # have already enabled input require gradients
        self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)


def _fp32_forward_post_hook(
    module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
) -> "torch.Tensor":
    return output.to(torch.float32)


def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
    r"""
    Includes:
        (1) cast the layernorm in fp32
        (2) make output embedding layer require grads
        (3) add the upcasting of the lm_head in fp32
    """
    if model_args.upcast_layernorm:
        logger.info("Upcasting layernorm weights in float32.")
        for name, param in model.named_parameters():
            if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
                param.data = param.data.to(torch.float32)

    if not model_args.disable_gradient_checkpointing:
        if not getattr(model, "supports_gradient_checkpointing", False):
            logger.warning("Current model does not support gradient checkpointing.")
        else:
            # use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
            # According to: https://github.com/huggingface/transformers/issues/28339
            gradient_checkpointing_enable = partial(
                _gradient_checkpointing_enable, use_unsloth_gc=model_args.use_unsloth_gc
            )
            model.gradient_checkpointing_enable = MethodType(gradient_checkpointing_enable, model)
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True})
            setattr(model.config, "use_cache", False)  # turn off when gradient checkpointing is enabled
            logger.info("Gradient checkpointing enabled.")

    if model_args.upcast_lmhead_output:
        output_layer = model.get_output_embeddings()
        if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
            logger.info("Upcasting lm_head outputs in float32.")
            output_layer.register_forward_hook(_fp32_forward_post_hook)