|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co") |
|
|
|
_DESCRIPTION = "BELLE multiturn chat dataset." |
|
|
|
_CITATION = """\ |
|
@article{belle2023exploring, |
|
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases}, |
|
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li}, |
|
journal={arXiv preprint arXiv:2303.14742}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT) |
|
_LICENSE = "gpl-3.0" |
|
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT) |
|
|
|
|
|
class BelleMultiturn(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
file_path = dl_manager.download(_URL) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})] |
|
|
|
def _generate_examples(self, filepath: str): |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
conversations = [] |
|
prompt = data["instruction"].strip() |
|
response = data["output"].strip() |
|
|
|
assist_idx = prompt.rfind("Assistant:") |
|
human_idx = prompt.rfind("Human:") |
|
query = prompt[human_idx + 6 : assist_idx].strip() |
|
prompt = prompt[:human_idx].strip() |
|
conversations.insert(0, {"from": "gpt", "value": response}) |
|
conversations.insert(0, {"from": "human", "value": query}) |
|
|
|
while prompt.rfind("Assistant:") != -1: |
|
assist_idx = prompt.rfind("Assistant:") |
|
human_idx = prompt.rfind("Human:") |
|
if human_idx != -1: |
|
old_query = prompt[human_idx + 6 : assist_idx].strip() |
|
old_resp = prompt[assist_idx + 10 :].strip() |
|
conversations.insert(0, {"from": "gpt", "value": old_resp}) |
|
conversations.insert(0, {"from": "human", "value": old_query}) |
|
else: |
|
break |
|
prompt = prompt[:human_idx].strip() |
|
|
|
yield key, {"conversations": conversations} |
|
|