|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import base64 |
|
import io |
|
import json |
|
import os |
|
import re |
|
import uuid |
|
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple |
|
|
|
from ..data import Role as DataRole |
|
from ..extras.logging import get_logger |
|
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available |
|
from .common import dictify, jsonify |
|
from .protocol import ( |
|
ChatCompletionMessage, |
|
ChatCompletionResponse, |
|
ChatCompletionResponseChoice, |
|
ChatCompletionResponseUsage, |
|
ChatCompletionStreamResponse, |
|
ChatCompletionStreamResponseChoice, |
|
Finish, |
|
Function, |
|
FunctionCall, |
|
Role, |
|
ScoreEvaluationResponse, |
|
) |
|
|
|
|
|
if is_fastapi_available(): |
|
from fastapi import HTTPException, status |
|
|
|
|
|
if is_pillow_available(): |
|
from PIL import Image |
|
|
|
|
|
if is_requests_available(): |
|
import requests |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..chat import ChatModel |
|
from ..data.mm_plugin import ImageInput |
|
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest |
|
|
|
|
|
logger = get_logger(__name__) |
|
ROLE_MAPPING = { |
|
Role.USER: DataRole.USER.value, |
|
Role.ASSISTANT: DataRole.ASSISTANT.value, |
|
Role.SYSTEM: DataRole.SYSTEM.value, |
|
Role.FUNCTION: DataRole.FUNCTION.value, |
|
Role.TOOL: DataRole.OBSERVATION.value, |
|
} |
|
|
|
|
|
def _process_request( |
|
request: "ChatCompletionRequest", |
|
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["ImageInput"]]: |
|
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False))) |
|
|
|
if len(request.messages) == 0: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length") |
|
|
|
if request.messages[0].role == Role.SYSTEM: |
|
system = request.messages.pop(0).content |
|
else: |
|
system = None |
|
|
|
if len(request.messages) % 2 == 0: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") |
|
|
|
input_messages = [] |
|
image = None |
|
for i, message in enumerate(request.messages): |
|
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") |
|
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") |
|
|
|
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls): |
|
tool_calls = [ |
|
{"name": tool_call.function.name, "arguments": tool_call.function.arguments} |
|
for tool_call in message.tool_calls |
|
] |
|
content = json.dumps(tool_calls, ensure_ascii=False) |
|
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content}) |
|
elif isinstance(message.content, list): |
|
for input_item in message.content: |
|
if input_item.type == "text": |
|
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text}) |
|
else: |
|
image_url = input_item.image_url.url |
|
if re.match(r"^data:image\/(png|jpg|jpeg|gif|bmp);base64,(.+)$", image_url): |
|
image_stream = io.BytesIO(base64.b64decode(image_url.split(",", maxsplit=1)[1])) |
|
elif os.path.isfile(image_url): |
|
image_stream = open(image_url, "rb") |
|
else: |
|
image_stream = requests.get(image_url, stream=True).raw |
|
|
|
image = Image.open(image_stream).convert("RGB") |
|
else: |
|
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content}) |
|
|
|
tool_list = request.tools |
|
if isinstance(tool_list, list) and len(tool_list): |
|
try: |
|
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False) |
|
except json.JSONDecodeError: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools") |
|
else: |
|
tools = None |
|
|
|
return input_messages, system, tools, image |
|
|
|
|
|
def _create_stream_chat_completion_chunk( |
|
completion_id: str, |
|
model: str, |
|
delta: "ChatCompletionMessage", |
|
index: Optional[int] = 0, |
|
finish_reason: Optional["Finish"] = None, |
|
) -> str: |
|
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason) |
|
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data]) |
|
return jsonify(chunk) |
|
|
|
|
|
async def create_chat_completion_response( |
|
request: "ChatCompletionRequest", chat_model: "ChatModel" |
|
) -> "ChatCompletionResponse": |
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) |
|
input_messages, system, tools, image = _process_request(request) |
|
responses = await chat_model.achat( |
|
input_messages, |
|
system, |
|
tools, |
|
image, |
|
do_sample=request.do_sample, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
max_new_tokens=request.max_tokens, |
|
num_return_sequences=request.n, |
|
stop=request.stop, |
|
) |
|
|
|
prompt_length, response_length = 0, 0 |
|
choices = [] |
|
for i, response in enumerate(responses): |
|
if tools: |
|
result = chat_model.engine.template.extract_tool(response.response_text) |
|
else: |
|
result = response.response_text |
|
|
|
if isinstance(result, list): |
|
tool_calls = [] |
|
for tool in result: |
|
function = Function(name=tool[0], arguments=tool[1]) |
|
tool_calls.append(FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)) |
|
|
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=tool_calls) |
|
finish_reason = Finish.TOOL |
|
else: |
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result) |
|
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH |
|
|
|
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)) |
|
prompt_length = response.prompt_length |
|
response_length += response.response_length |
|
|
|
usage = ChatCompletionResponseUsage( |
|
prompt_tokens=prompt_length, |
|
completion_tokens=response_length, |
|
total_tokens=prompt_length + response_length, |
|
) |
|
|
|
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage) |
|
|
|
|
|
async def create_stream_chat_completion_response( |
|
request: "ChatCompletionRequest", chat_model: "ChatModel" |
|
) -> AsyncGenerator[str, None]: |
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) |
|
input_messages, system, tools, image = _process_request(request) |
|
if tools: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.") |
|
|
|
if request.n > 1: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.") |
|
|
|
yield _create_stream_chat_completion_chunk( |
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="") |
|
) |
|
async for new_token in chat_model.astream_chat( |
|
input_messages, |
|
system, |
|
tools, |
|
image, |
|
do_sample=request.do_sample, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
max_new_tokens=request.max_tokens, |
|
stop=request.stop, |
|
): |
|
if len(new_token) != 0: |
|
yield _create_stream_chat_completion_chunk( |
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token) |
|
) |
|
|
|
yield _create_stream_chat_completion_chunk( |
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP |
|
) |
|
yield "[DONE]" |
|
|
|
|
|
async def create_score_evaluation_response( |
|
request: "ScoreEvaluationRequest", chat_model: "ChatModel" |
|
) -> "ScoreEvaluationResponse": |
|
score_id = "scoreval-{}".format(uuid.uuid4().hex) |
|
if len(request.messages) == 0: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") |
|
|
|
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length) |
|
return ScoreEvaluationResponse(id=score_id, model=request.model, scores=scores) |
|
|