|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple |
|
|
|
from ...extras.logging import get_logger |
|
from ..data_utils import Role |
|
from .processor_utils import infer_seqlen |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, ProcessorMixin |
|
|
|
from ...hparams import DataArguments |
|
from ..mm_plugin import ImageInput, VideoInput |
|
from ..template import Template |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _encode_unsupervised_example( |
|
prompt: Sequence[Dict[str, str]], |
|
response: Sequence[Dict[str, str]], |
|
system: Optional[str], |
|
tools: Optional[str], |
|
images: Sequence["ImageInput"], |
|
videos: Sequence["VideoInput"], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
cutoff_len: int, |
|
) -> Tuple[List[int], List[int]]: |
|
if len(response) == 1: |
|
messages = prompt + response |
|
else: |
|
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] |
|
|
|
messages = template.mm_plugin.process_messages(messages, images, videos, processor) |
|
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools) |
|
if template.efficient_eos: |
|
labels += [tokenizer.eos_token_id] |
|
|
|
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor) |
|
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len) |
|
input_ids = input_ids[:source_len] |
|
labels = labels[:target_len] |
|
return input_ids, labels |
|
|
|
|
|
def preprocess_unsupervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[Any]]: |
|
|
|
model_inputs = defaultdict(list) |
|
for i in range(len(examples["_prompt"])): |
|
if len(examples["_prompt"][i]) % 2 != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_unsupervised_example( |
|
prompt=examples["_prompt"][i], |
|
response=examples["_response"][i], |
|
system=examples["_system"][i], |
|
tools=examples["_tools"][i], |
|
images=examples["_images"][i] or [], |
|
videos=examples["_videos"][i] or [], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=processor, |
|
cutoff_len=data_args.cutoff_len, |
|
) |
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
model_inputs["images"].append(examples["_images"][i]) |
|
model_inputs["videos"].append(examples["_videos"][i]) |
|
|
|
return model_inputs |
|
|
|
|
|
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
|