|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import Trainer |
|
from typing_extensions import override |
|
|
|
from ...extras.logging import get_logger |
|
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, ProcessorMixin |
|
from transformers.trainer import PredictionOutput |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class PairwiseTrainer(Trainer): |
|
r""" |
|
Inherits Trainer to compute pairwise loss. |
|
""" |
|
|
|
def __init__( |
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.finetuning_args = finetuning_args |
|
self.can_return_loss = True |
|
self.add_callback(FixValueHeadModelCallback) |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.pissa_convert: |
|
self.add_callback(PissaConvertCallback) |
|
|
|
if finetuning_args.use_badam: |
|
from badam import BAdamCallback, clip_grad_norm_old_version |
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) |
|
self.add_callback(BAdamCallback) |
|
|
|
@override |
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
@override |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|
|
@override |
|
def compute_loss( |
|
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False |
|
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]: |
|
r""" |
|
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected. |
|
|
|
Subclass and override to inject custom behavior. |
|
|
|
Note that the first element will be removed from the output tuple. |
|
See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842 |
|
""" |
|
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False) |
|
batch_size = inputs["input_ids"].size(0) // 2 |
|
chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0) |
|
chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0) |
|
chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1)) |
|
rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1)) |
|
chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze() |
|
|
|
loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean() |
|
if return_outputs: |
|
return loss, (loss, chosen_scores, rejected_scores) |
|
else: |
|
return loss |
|
|
|
def save_predictions(self, predict_results: "PredictionOutput") -> None: |
|
r""" |
|
Saves model predictions to `output_dir`. |
|
|
|
A custom behavior that not contained in Seq2SeqTrainer. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") |
|
logger.info(f"Saving prediction results to {output_prediction_file}") |
|
chosen_scores, rejected_scores = predict_results.predictions |
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer: |
|
res: List[str] = [] |
|
for c_score, r_score in zip(chosen_scores, rejected_scores): |
|
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)})) |
|
|
|
writer.write("\n".join(res)) |
|
|