# coding=utf-8 # Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is based on the HuggingFace's PEFT library. # https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import TYPE_CHECKING import fire from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model from transformers import AutoModelForCausalLM, AutoTokenizer if TYPE_CHECKING: from transformers import PreTrainedModel def quantize_loftq( model_name_or_path: str, output_dir: str, loftq_bits: int = 4, loftq_iter: int = 4, lora_alpha: int = None, lora_rank: int = 16, lora_dropout: float = 0, lora_target: tuple = ("q_proj", "v_proj"), save_safetensors: bool = True, ): r""" Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ) Usage: python loftq_init.py --model_name_or_path path_to_model --output_dir output_dir """ if isinstance(lora_target, str): lora_target = [name.strip() for name in lora_target.split(",")] tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto") loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter) lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=True, r=lora_rank, lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2, lora_dropout=lora_dropout, target_modules=lora_target, init_lora_weights="loftq", loftq_config=loftq_config, ) # Init LoftQ model print("Initializing LoftQ weights, it may be take several minutes, wait patiently.") peft_model = get_peft_model(model, lora_config) loftq_dir = os.path.join(output_dir, "loftq_init") # Save LoftQ model setattr(peft_model.peft_config["default"], "base_model_name_or_path", os.path.abspath(output_dir)) setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply loftq again peft_model.save_pretrained(loftq_dir, safe_serialization=save_safetensors) print("Adapter weights saved in {}".format(loftq_dir)) # Save base model base_model: "PreTrainedModel" = peft_model.unload() base_model.save_pretrained(output_dir, safe_serialization=save_safetensors) tokenizer.save_pretrained(output_dir) print("Model weights saved in {}".format(output_dir)) print("- Fine-tune this model with:") print("model_name_or_path: {}".format(output_dir)) print("adapter_name_or_path: {}".format(loftq_dir)) print("finetuning_type: lora") print("quantization_bit: {}".format(loftq_bits)) if __name__ == "__main__": fire.Fire(quantize_loftq)