# Copyright 2024 the LlamaFactory team. # # This code is inspired by the Dan's test library. # https://github.com/hendrycks/test/blob/master/evaluate_flan.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # MIT License # # Copyright (c) 2020 Dan Hendrycks # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import os from typing import TYPE_CHECKING, Any, Dict, List, Optional import numpy as np import torch from datasets import load_dataset from tqdm import tqdm, trange from transformers.utils import cached_file from ..data import get_template_and_fix_tokenizer from ..extras.constants import CHOICES, SUBJECTS from ..hparams import get_eval_args from ..model import load_model, load_tokenizer from .template import get_eval_template if TYPE_CHECKING: from numpy.typing import NDArray class Evaluator: def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args) self.tokenizer = load_tokenizer(self.model_args)["tokenizer"] self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2 self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args) self.model = load_model(self.tokenizer, self.model_args, finetuning_args) self.eval_template = get_eval_template(self.eval_args.lang) self.choice_inputs = [self.tokenizer.encode(ch, add_special_tokens=False)[-1] for ch in CHOICES] @torch.inference_mode() def batch_inference(self, batch_input: Dict[str, "torch.Tensor"]) -> List[str]: logits = self.model(**batch_input).logits lengths = torch.sum(batch_input["attention_mask"], dim=-1) word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0) choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach() return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)] def eval(self) -> None: eval_task = self.eval_args.task.split("_")[0] eval_split = self.eval_args.task.split("_")[1] mapping = cached_file( path_or_repo_id=os.path.join(self.eval_args.task_dir, eval_task), filename="mapping.json", cache_dir=self.model_args.cache_dir, token=self.model_args.hf_hub_token, ) with open(mapping, "r", encoding="utf-8") as f: categorys: Dict[str, Dict[str, str]] = json.load(f) category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS} pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0) results = {} for subject in pbar: dataset = load_dataset( path=os.path.join(self.eval_args.task_dir, eval_task), name=subject, cache_dir=self.model_args.cache_dir, download_mode=self.eval_args.download_mode, token=self.model_args.hf_hub_token, trust_remote_code=True, ) pbar.set_postfix_str(categorys[subject]["name"]) inputs, outputs, labels = [], [], [] for i in trange(len(dataset[eval_split]), desc="Formatting batches", position=1, leave=False): support_set = ( dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"])))) ) messages = self.eval_template.format_example( target_data=dataset[eval_split][i], support_set=support_set, subject_name=categorys[subject]["name"], ) input_ids, _ = self.template.encode_oneturn(tokenizer=self.tokenizer, messages=messages) inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)}) labels.append(messages[-1]["content"]) for i in trange( 0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False ): batch_input = self.tokenizer.pad( inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt" ).to(self.model.device) preds = self.batch_inference(batch_input) outputs += preds corrects = np.array(outputs) == np.array(labels) category_name = categorys[subject]["category"] category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0) category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0) results[subject] = {str(i): outputs[i] for i in range(len(outputs))} pbar.close() self._save_results(category_corrects, results) def _save_results(self, category_corrects: Dict[str, "NDArray"], results: Dict[str, Dict[int, str]]) -> None: score_info = "\n".join( [ "{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct)) for category_name, category_correct in category_corrects.items() if len(category_correct) ] ) print(score_info) if self.eval_args.save_dir is not None: os.makedirs(self.eval_args.save_dir, exist_ok=False) with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f: json.dump(results, f, indent=2) with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f: f.write(score_info) def run_eval() -> None: Evaluator().eval()