# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple from ..chat import ChatModel from ..data import Role from ..extras.constants import PEFT_METHODS from ..extras.misc import torch_gc from ..extras.packages import is_gradio_available from .common import QUANTIZATION_BITS, get_save_dir from .locales import ALERTS if TYPE_CHECKING: from ..chat import BaseEngine from .manager import Manager if is_gradio_available(): import gradio as gr class WebChatModel(ChatModel): def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None: self.manager = manager self.demo_mode = demo_mode self.engine: Optional["BaseEngine"] = None if not lazy_init: # read arguments from command line super().__init__() if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): # load demo model model_name_or_path = os.environ.get("DEMO_MODEL") template = os.environ.get("DEMO_TEMPLATE") infer_backend = os.environ.get("DEMO_BACKEND", "huggingface") super().__init__( dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend) ) @property def loaded(self) -> bool: return self.engine is not None def load_model(self, data) -> Generator[str, None, None]: get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path") error = "" if self.loaded: error = ALERTS["err_exists"][lang] elif not model_name: error = ALERTS["err_no_model"][lang] elif not model_path: error = ALERTS["err_no_path"][lang] elif self.demo_mode: error = ALERTS["err_demo"][lang] if error: gr.Warning(error) yield error return if get("top.quantization_bit") in QUANTIZATION_BITS: quantization_bit = int(get("top.quantization_bit")) else: quantization_bit = None yield ALERTS["info_loading"][lang] args = dict( model_name_or_path=model_path, finetuning_type=finetuning_type, quantization_bit=quantization_bit, quantization_method=get("top.quantization_method"), template=get("top.template"), flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", use_unsloth=(get("top.booster") == "unsloth"), rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, infer_backend=get("infer.infer_backend"), infer_dtype=get("infer.infer_dtype"), ) if checkpoint_path: if finetuning_type in PEFT_METHODS: # list args["adapter_name_or_path"] = ",".join( [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path] ) else: # str args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path) super().__init__(args) yield ALERTS["info_loaded"][lang] def unload_model(self, data) -> Generator[str, None, None]: lang = data[self.manager.get_elem_by_id("top.lang")] if self.demo_mode: gr.Warning(ALERTS["err_demo"][lang]) yield ALERTS["err_demo"][lang] return yield ALERTS["info_unloading"][lang] self.engine = None torch_gc() yield ALERTS["info_unloaded"][lang] def append( self, chatbot: List[List[Optional[str]]], messages: Sequence[Dict[str, str]], role: str, query: str, ) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]: return chatbot + [[query, None]], messages + [{"role": role, "content": query}], "" def stream( self, chatbot: List[List[Optional[str]]], messages: Sequence[Dict[str, str]], system: str, tools: str, image: Optional[Any], video: Optional[Any], max_new_tokens: int, top_p: float, temperature: float, ) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]: chatbot[-1][1] = "" response = "" for new_text in self.stream_chat( messages, system, tools, image, video, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature ): response += new_text if tools: result = self.engine.template.extract_tool(response) else: result = response if isinstance(result, list): tool_calls = [{"name": tool[0], "arguments": json.loads(tool[1])} for tool in result] tool_calls = json.dumps(tool_calls, indent=4, ensure_ascii=False) output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_calls}] bot_text = "```json\n" + tool_calls + "\n```" else: output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}] bot_text = result chatbot[-1][1] = bot_text yield chatbot, output_messages