Update README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ inference:
|
|
20 |
parameters:
|
21 |
temperature: 90.0
|
22 |
return_full_text: False
|
23 |
-
repetition_penalty: 20
|
24 |
|
25 |
|
26 |
---
|
@@ -28,4 +28,25 @@ inference:
|
|
28 |
|
29 |
Given a few keywords, it generates an Eli5 question with a corresponding answer.
|
30 |
|
31 |
-
The model is mainly used for [SeemsPhishy](https://github.com/madhour/seemsphishy) to auto generate newsletters for phishing/penetration-testing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
parameters:
|
21 |
temperature: 90.0
|
22 |
return_full_text: False
|
23 |
+
repetition_penalty: 20
|
24 |
|
25 |
|
26 |
---
|
|
|
28 |
|
29 |
Given a few keywords, it generates an Eli5 question with a corresponding answer.
|
30 |
|
31 |
+
The model is mainly used for [SeemsPhishy](https://github.com/madhour/seemsphishy) to auto generate newsletters for phishing/penetration-testing.
|
32 |
+
|
33 |
+
# How to use
|
34 |
+
|
35 |
+
```
|
36 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
37 |
+
from torch import tensor
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("Madhour/gpt2-eli5")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("Madhour/gpt2-eli5")
|
41 |
+
prompt = <|BOS|> +"I have a question."+ <|SEP|> + "keyword1,keyword2,keyword3" + <|SEP|>
|
42 |
+
prompt = tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
43 |
+
text = model.generate(prompt,
|
44 |
+
do_sample=True,
|
45 |
+
min_length=50,
|
46 |
+
max_length=768,
|
47 |
+
top_k=30,
|
48 |
+
top_p=0.7,
|
49 |
+
temperature=0.9,
|
50 |
+
repetition_penalty=2.0,
|
51 |
+
num_return_sequences=3)
|
52 |
+
```
|