File size: 5,066 Bytes
ae541cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import json
from huggingface_hub import HfApi
from transformers import PreTrainedTokenizer

class CharacterTokenizer(PreTrainedTokenizer):
    """
    Simple character-level tokenizer
    """

    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        unk_token="[UNK]",
        pad_token="[PAD]",
        bos_token="[BOS]",
        eos_token="[EOS]",
        sep_token="[SEP]",
        **kwargs
    ):

        vocab = {}
        # Add special tokens
        special_tokens = [
            unk_token,
            pad_token,
            bos_token,
            eos_token,
            sep_token,
          ]
        for token in special_tokens:
            if token not in vocab:
                vocab[token] = len(vocab)
        self.vocab = vocab
        self.inv_vocab = {v: k for k, v in self.vocab.items()}

        # Call parent constructor
        super().__init__(
            unk_token=unk_token,
            pad_token=pad_token,
            bos_token=bos_token,
            eos_token=eos_token,
            sep_token=sep_token,
            **kwargs
        )

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return dict(self.vocab)

    def _tokenize(self, text):
        return list(text)

    def _convert_token_to_id(self, token):
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        return self.inv_vocab.get(index, self.unk_token)

    def save_vocabulary(self, save_directory, filename_prefix=None):
        if not os.path.isdir(save_directory):
            os.makedirs(save_directory)

        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + "vocab.json"
        )

        with open(vocab_file, "w", encoding="utf-8") as f:
            json.dump(self.vocab, f, ensure_ascii=False)

        return (vocab_file,)

    def train(self, texts):
        # Start with special tokens
        vocab = {}
        special_tokens = [
            self.unk_token,
            self.pad_token,
            self.bos_token,
            self.eos_token,
            self.sep_token,
          ]
        for token in special_tokens:
            if token not in vocab:
                vocab[token] = len(vocab)

        # Add all unique characters from the training data
        for text in texts:
            # Replace all special tokens with placeholders
            processed_text = text
            for token in special_tokens:
                processed_text = processed_text.replace(token, " ")

            # Add remaining characters
            for char in processed_text:
                if char not in vocab:
                    vocab[char] = len(vocab)

        self.vocab = vocab
        self.inv_vocab = {v: k for k, v in self.vocab.items()}

        print(f"Vocabulary built with {len(self.vocab)} tokens")
        return self

    def convert_tokens_to_string(self, tokens):
        return "".join(tokens)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        from transformers import PreTrainedTokenizerFast
        from transformers.utils import cached_file

        # Try to get the vocab file from the Hub or local directory
        try:
            # Try to get vocab.json using the HF Hub utilities
            vocab_file = cached_file(
                pretrained_model_name_or_path,
                "vocab.json",
                _raise_exceptions_for_missing_entries=False
            )

            # If vocab file is found, load the tokenizer from it
            if vocab_file:
                return cls.from_json(vocab_file, *inputs, **kwargs)

        except Exception as e:
            # If the file is not found on the Hub, try to load it from a local directory
            local_vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
            if os.path.exists(local_vocab_file):
                return cls.from_json(local_vocab_file, *inputs, **kwargs)

            # If both approaches fail, try to load using the PreTrainedTokenizerFast fallback
            tokenizer_files = [
                os.path.join(pretrained_model_name_or_path, "tokenizer.json"),
                os.path.join(pretrained_model_name_or_path, "tokenizer_config.json")
            ]

            for tokenizer_file in tokenizer_files:
                if os.path.exists(tokenizer_file):
                    print(f"Loading using PreTrainedTokenizerFast from {tokenizer_file}")
                    fast_tokenizer = PreTrainedTokenizerFast.from_pretrained(pretrained_model_name_or_path)
                    vocab = {token: i for token, i in fast_tokenizer.get_vocab().items()}
                    return cls.from_vocab(vocab, *inputs, **kwargs)

            # If all else fails, raise an error
            raise ValueError(
                f"Could not find vocab.json in {pretrained_model_name_or_path}. "
                f"Error: {str(e)}"
            )